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Abstract

We consider the real vector field (f(z,y),g(z,y)) on the real plane IR?.
This vector field describes the dynamical system

{i=ﬂ%w

v =g(z,y)

A classical Center-Focus problem, which was stated by H. Poincare in 1880’s,
is: find conditions on f, g, under which all trajectories of this dynamical sys-
tem are closed curves around some point. This situation is called a center.
In some cases this problem is reduced to the problem of finding conditions
for solutions of Abel differential equation

o' =p0)p* +q(0)p°

to be periodic on the interval [0, 27].

In the thesis various special cases of the Center-Focus problem for Abel
Equation are investigated, through their relation to Composition algebra of
polynomials and rational functions, to Generalized Moments and to Algebraic
Geometry of Plane Curves.
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Chapter 1

Introduction

Let F(z,y), G(x,y) be algebraic polynomials in z, y without free and linear
terms. Consider the system of differential equations

T = —y-l—F(x,y)
{y =z + G(z,y) (L.1)

One can reduce the system (1.1) with homogeneous F', G of degree d to Abel
differential equation
P =p0)p* +q(6)0, (1.2)

where p(6), ¢(6) are polynomials in sin 8, cos f of degrees depending only on
d. Then (1.1) has a center if and only if (1.2) has all the solutions periodic
on [0, 27], i.e. solutions p = p(#) satisfying y(0) = y(27).

The classical center problem as stated for (1.2) is to find conditions on p
and ¢ such that (1.2) has a center. We shall call it Center Condition.

The following simple sufficient condition was introduced in [AL]. Let
w(f) € C'[0, 27| be a function such that w(0) = w(27). Let

p(0) = B(w(0)w'(9)
{ 4(0) = G(w(9))w'(9). (1.3)

Then all the solutions of (1.2) have the form p(6) = p(w(f)), hence they
satisfy the condition p(0) = p(27).

We shall call the representation (1.3) Composition Condition on p, g.
The composition condition is sufficient, but not necessary for the center.



The main subject of this research is the investigation of relations between
center and composition conditions.

In the next chapter I introduce statement of center problem for vector
fields on the plane. Reduction of the problem to the problem for Abel dif-
ferential equation (Cherkas transform) is demonstrated and an attempt is
done to generalize it. Center and composition conditions are investigated for
dynamical systems on the plane with F'; G — homogeneous polynomials of
degrees 2 and 3. We show which center components can be represented as a
composition and which can not.

In the third chapter I introduce Poincare return map for Abel differential
equation. Recurrence relations and corresponding ideals are studied and
generators for these ideals are found.

In the fourth chapter of the thesis Abel differential equation is studied
with p, ¢ — trigonometric polynomials of small degrees (up to 2). It is shown
that in these cases center and composition conditions coincide, although it is
known that for greater degrees of p, ¢ some center conditions are not given
by composition.

In the fifth chapter of the thesis center and composition conditions are
studied for Abel differential equation with p, ¢ — algebraic polynomials of
small degrees. It is shown that these conditions coincide. Some generaliza-
tion of center problem are introduced. We show also some special families of
polynomials, for which equivalence of the center and the composition condi-
tions can be easily shown.

In the sixth chapter Riemann Surface approach to the Center problem for
Abel equation is discussed. This is a convenient general setting, where Abel
Equation is considered on a given Riemann Surface. The notions of center
and composition are generalized accordingly.

In the seventh chapter we study composition for rational functions. We
establish some facts about structure of composition for algebraic polynomials
and Laurent polynomials.

In the eighth chapter center problem is studied for Abel differential equa-
tion with rational functions p, ¢. One can rewrite the differential equation

(1.2) in a complex form, expressing sin § and cos @ through z = €%, i.e.

_ z—i—zfl
cos ) = Z—,
: _ z—2" 1
sinf) = ==—,

P=1Y,
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so one obtains p and ¢ in the form of Laurent polynomials in z, and Abel
differential equation is
dy
dz
considered on the circle z([0, 27]) = S*. It is shown that certain integral con-
dition on P = [ p and Q = [ ¢ (namely vanishing of generalized moments
f|z|:1 PiQ’dP = 0) implies center.

Finally, in the last chapter of the thesis Riemann-surface approach is ex-
tended for the case of elliptic functions. Specifically, for elliptic functions P,
Q it is shown that in general the condition f|z|:1 P'QdP = 0 does not imply
center. The difference between the Laurent polynomials and elliptic func-
tions P, () is shown to be in the topology of the complex curve parametrized
by P(z), Q(z) in C%. In the first case this curve is rational, and in the second
case it is topologically a torus. The one-dimensional homology of the torus
is responsible for ramification of the solutions of the Abel equation, in spite
of vanishing of all the moments f| PiQ/dP.

p(2)y* +q(2) ¥

z|=1



Chapter 2

Center and Composition
Conditions for vector fields on
the plane

2.1 Introduction

The following formulation of the center problem (see e.g. [Sch] for a general
discussion of the classical center problem) is considered: Let F(z,y), G(z,y)
be algebraic homogeneous polynomials in z, y of degree d. Consider the
system of differential equations

A solution z(t), y(t) of (2.1) is said to be closed if it is defined in the
interval [0,%o] and z(0) = z(ty), y(0) = y(to). The system (2.1) is said to
have a center at 0 if all the solutions around zero are closed. Then the
general problem is: under what conditions on F,G the system (2.1) has a
center at zero?

It was shown in [Ch] that one can reduce the system (2.1) with homoge-
neous F', G of degree d to Abel equation

{jf: —y+ F(z,9) (2.1)

o =p(p)p® + qle)p’ (2.2)
where p(p), q(¢) are polynomials in sin ¢, cos ¢ of degrees d + 1 and 2d + 2



respectively. Then (2.1) has a center if and only if (2.2) has all the solutions
periodic on [0, 27], i.e. all the solutions r = r(¢) with p(0) sufficiently small
satisfy p(0) = p(27). Conditions on coefficients of p, ¢, under which (2.2) has
all the solutions periodic, are called center conditions for Abel equation
(2.2).

Following [AL], in [BFY1-BFY3] the following simple sufficient condition
2 ¢
was stated. Let P(y) :/ p(t)dt, Q(p) :/ q(t)dt. Then:
0 0

Composition Condition. The sufficient condition for the existence of the
center for (2.2) is the representability of P(p), Q(p) as a composition of al-
gebraic polynomials with trigonometric polynomaial, i.e. there exist a trigono-
metric polynomial W (p) - polynomial of cos ¢, sing s.t. W(0) = W(2r) =
0, and algebraic polynomials P, Q without free terms, s.t. P(p) = P(W(y)),
Qp) = QW (9)).

The sufficiency follows from the fact, that if P = P(W), Q@ = Q(W), then
the solution of (2.2) p(p) = p(W), and as W(0) = W (2x), p(0) = p(27).

The full center conditions are known yet only for homogeneous perturba-
tions F', G of degrees d = 2, 3. In this chapter we

e discuss Cherkas transform and suggest a possible generalization of it(sections
2.2-2.3);

e show, following [AL], that Hamiltonian and Symmetric components are
given in fact by composition (section 2.4);

o explicitly write down composition representation for Hamiltonian and
Symmetric components in quadratic (section 2.5) and cubic (section
2.6) cases;

e show by counterexample that other known center components for quadratic
and cubic homogeneous vector fields are in general unrepresentable as
a composition(sections 2.5.3, 2.6.3).

10



2.2 Cherkas transform

We shall show how in a special case of systems (2.1), the problem of finding
center conditions on F(z,y), G(z,y) can be reduced to the center problem
for Abel equation (2.2).

Write (2.1) in polar coordinates © = r cosf, y = r sinf. We obtain

=17 cosf—r sin@-t?.: —r sinf + F(r cosf,r sinf)
y=7 sinf —r cosf-0=r cosf+ F(r cosf,r sinf)

Multiplying the first equation by cosf, the second by sin# and adding,
we get
7= F(r cosf,r sinf)cosf + G(r cosf,r sinf)siné

= r%(F(cos 6, sin ) cos § + G(cos 8, sin 0) sin §) = 7 ()
In a similar way,

0 =1+ r¢ ' (—F(cosf,sinf)sinf + G(cosf,sin ) cos§) = 1 + 41 g(0)

Finally, we get
ar 7 r'f(0)
g  1+ri-1g(0)

Then we apply a transformation, suggested by L. Cherkas in [Chel]:

,’,.d—l
P 1414 1g(0)
pi-1 — P
1—pg(6)

Notice that for d = 2 this transformation and its inverse are regular at

r = p = 0. For d > 2, Cherkas’ transformation, considered over complex

numbers, ramifies at zero, but for small real » > 0, p > 0, it is monotone.
Denote 1+ r%~1g(0) by A. We have

@—i _ d—2 ﬂ _.d-1 _ d—2@ d—1 1
0= <(d )r 7 A—r (d—1)r d99(9)+r q9)

r

= (((d —DF(0) + g (0)r* = (A= 1)F 0)9(0) )

11



= ((d=1)f(0)+4(0) p* = (d—1)f(6)9(0)p°
Thus we obtain

dp 2 3
— =p(f 0
10 p(0)p* +q()p

where p(6) = (d—1)f(0)+4'(#) and ¢(f) = —(d—1)f(#)g() are polynomials
in sin 6, cos§ of degrees d + 1 and 2d + 2, respectively.

Clearly, the trajectory of (2.1) near the origin is closed if and only if the
corresponding solution of (2.2) satisfies p(27) = p(0) (and hence is periodic).
Therefore the center-focus problem for (2.1) is translated into the problem
of finding conditions on p and ¢, under which all the solutions of (2.2) are
periodic.

2.3 General transform from a plane vector
field to a first order non-autonomous dif-
ferential equation

In this section a transform from a polynomial plane vector field to a first order
non-autonomous differential equation is illustrated. Let F(z,y), G(z,y) be
arbitrary polynomials of degree grater than 2. We can consider any polyno-
mials F'(z,y), G(x,y) as a sum of homogeneous polynomials F,;, G4 of degree
d:

G=G,+Gs+...+ G

In a similar way to the homogeneous case we obtain

{F:F2+F3+...+Fk

dr 7 r2fy(0) + r2f3(0) + ... + 7 £ (0)

196 1= 192(0) — °0(0) — ... — 7 gu(6)

When r is sufficiently small, we can write it as

% = (L) + ' f(0) + -+ 7 u(0)) 3_(rgr(0)+7795(0)+. - 47 gu(0))

12



After multiplication we obtain formal infinite power series:

[e o]

= E a; ',

=2

where a; are polynomials in sin 6, cos 6.
Now we can apply normal form technique, eliminating one by one all the
terms of degrees higher than 3. Namely, substituting v = r + €(¢) r*, we get

0 = r+értHderds = 7 (14+der®)+ért Z a; ) (1+4e ( Z ) +€ (u—eu)*

= apu® + azu® + (ag + €)u' + ...

So by choosing ¢ = —a, we get differential equation with the right hand
side — power series without u*. Continuing elimination, we can kill all terms
u® for k > 0 (there are some obstructions to this process, which we don’t
discuss now). In some cases this leads to a finite Abel equation of a higher
degree than 3.

2.4 Composition conditions for Symmetric and
Hamiltonian components in general case

2.4.1 Hamiltonian system
We consider the system
{r'v =—y— %Z (z,y)
g =x+Y(z,y)

with H(z,y) — homogeneous polynomial in z, y of degree d + 1. After trans-
forming to polar coordinates we get

{ P =rf(0)
0=1+r"1g(0)
with

fo) = ——H(cos @ sin §) cos 0 + %—Z(COS 6,sin @) sin 0,

13



hence f(0) = —4L H(cos 6, sin 6).

g(0) = %—ZI(COS fsin §) sin 0 + %—Z (cosB,sin ) cos .
Due to homogeneity of H ¢(0) = (d + 1)H(cos 6, sin0).
Applying Cherkas transformation, we obtain the Abel equation p' =
p(0)p* + q(0)p®, with p(6) = (d = 1)f(6) — g'(0), q(6) = —(d — 1)£(0)g(0).

Integrating, we get

P(8) = —(d—1)H (cos 8, sin0)—(d+1)H (cos 8, sin )+C; = —2dH(cos 8, sin §)+C}.
dH (cosf,sinf)

q(0) = (d* - 1) o H(cos0,sin @),
hence
-1, .
Q) = H*(cosf,sinf) + Cs,
and
2?-1_,
Q) = P*(6) + C5P(0),

8d?
where Cj3 is a constant.

2.4.2 Symmetric component

We consider the planar system

{-T:_y+F($7y)
y=z+G(z,y)

As we can rotate our system around the origin, it is enough to consider the
case of symmetry with respect to z-axis:

{F(l‘, _y) = —F($,y)
G(il?,—y) = G(.’E,y)

In polar coordinates we get f(—60) = F(cos 6, — sin #) cos 0+G(cos 0, —sin ) (— sin 0) =
—f(0), g(—0) = —F(cos 0, —sin 0)(— sin 0) + G(cos 0, —sin ) cos § = ¢(0).
After Cherkas transformations we get p(6) = (d — 1)f(8) — ¢'(0), q(0) =
—(d —1)f(6)g(0), hence p(d) and ¢(¢) are odd functions, hence P(¢) and
Q(0) are even functions, i.e. they are functions of cos 6.

14



Below we write down explicit expressions for coefficients of such compo-
sitions for Hamiltonian and Symmetric cases for homogeneous polynomial
planar systems of the second and the third degrees.

2.5 Composition and center conditions for quadratic
planar systems
The system (2.1) with homogeneous F(z,y), G(z,y) of degree 2 can be

rewritten with 5 parameters instead of 6, using rotation of the plane, in
Dulak-Kapteyn form:

Fz (.’L’) = —/\3372 + (2A2 + /\5)xy + /\6y2
Ga(r) = + 022 + (2A3 + A\g)zy — A1)
We know the components of a center set for this case:

{d3—X=0, Lotka-Volterra component (Q%V)
)\2 == 0 . R
Y Symmetric component (Q3°)

5 =
)\4 =0 : : H
=0 Hamiltonian component (Q3')
5 =
)\5 =0
Ay +5A3—5X =0 . Darbu component (Q4)

We shall find the direct representations of Symmetric and Hamiltonian
components as a composition, and we shall show that in general case Lotka-
Volterra and Darbu components can not be represented as a composition.

2.5.1 The composition condition for the Hamiltonian
component

Lemma. In Hamiltonian case the system has the form

i =4y — A2 + 2Xazy + Aey?
U = —x + Mz’ + 2\37y — \oy?

15



and there exists a composition of the form

Q) = o P(@) + PP()

Proof: Using the Mathematica program we find

P =(1/3)(4)\y — 45 cos 3z — 3((A3 — Ag)) sinx — 3A3sin 3z — Mg sin 3z),

Q = —(1/96) sin x(—8X2(3A3+Xg) cos £—16A2 (33— Ag) cos 3x—24 A9 A3 cos bz —
8X9 g cOS 5z + 163 sin x — 183 sin 2+ 123 Ag sin z — 103 sin £ + 163 sin 3z —
272 sin 3z +6A3)6 sin 3z +5A2 sin 32+ 163 sin 52 —9A2 sin 52 — 63 A6 sin 5z —
A2 sin 5z).

Now to choose X in the representation Q(z) = = (P*(z) + AP(z)) we

compute P(7) = 8\y/3, Q(w) =0, hence A = —8),/3, and the identity

8y

Q) — o (P(0) ~ 2P(9))

0
3

holds. W

2.5.2 Composition condition for the symmetric com-
ponent

Lemma. In Symmetric case P and QQ are represented as a composition of
algebraic polynomials with sin x.

Proof: In this case we get

Fz(l') = —/\3332 —+ )\6y2
Go(z) = (2A3+ M)y

and after Mathematica computations we obtain
P = (1/3)(—3\3sinz + 3Xgsinz — 3A3sin 3z — A4 sin 3z — Ag sin 3z),
Q = 155 (1803> — 18 A3 As — 8 A" — 12 A3 Ag + 2 A A6 + 10 Ag> + 9 \3” cos 22 +
30 A3 Ay cos 22+ 9 \s% cos 2246 A3 N €08 22 — 6 My \g cos 22 — 15 \g” cos 2z —
18 A3 cos4x —6 A3 Ay cos 4z + 12 A3 \g cos 4z +6 My \g cos 4z +6 \g> cos 4z —
9 X3% cosb6x — 6 A3 Ay cOS6T — Ay cos6x — 6 A3 Ag cOS62 — 2 Ny \g cOS 6 —
As” cos 6)

16



We see, that P(z) is a function of sinz without a free term, and Q(z) as
a function of cos(2kx) also may be expressed through sin z. To check that it
is the function without a free term, we substitute x = 0 and get 0. B

2.5.3 Non-composition components for quadratic sys-
tems

One of ways to check if two polynomials P(z), @Q(x) have a common divisor
is to plot graphs of polynomials P(z) — P(y) and Q(z) — Q(y) on the real
plane (z,y) and to see if there is a common subgraph outside the diagonal
x = y. For real curves these subgraphs are real (see [ER] for detail).
We plot graphs for different numerical values in each of the four compo-
nents , using the “Matlab” software.
For Lotka-Volterra component we consider the numerical example (see
Figure 2.1)
F(z,y) = 32 — 3y?
G(z,y) = 62° — 2zy — 6

Plots of P(x)-P(y) (red) and Q()-Qy) (green)

Figure 2.1: Graph for Lotka-Volterra component

For Darbu component we consider the numerical example with parame-
ters Ao =2, A3 =6, Ay = =25, A5 = 0, \g = 1 (see Figure 2.2) i.e.

F(z,y) = —62® + 4oy + ¢
G(x,y) = 2z* — 132y — 29*

For Lotka-Voltera and Darbu components we see that there is no common
subgraph. Although rigorous proof would require discussion of computer pre-
cision of Matlab software and graphical capabilities of hardware, we assume

17



Plots of P(x)-P(y) (red) and Q()-Qy) (green)

Figure 2.2: Graph for Darbu component

that visually observable distance between curves is greater than machine er-
ror, and there is no common subgraph. These graphical counterexamples
prove that there is no composition for these two components.

2.6 Cubic polynomial vector fields

The system (2.1) with homogeneous F(z,y), G(z,y) of degree 3 can be
rewritten in the complex notations ( Zoladek [Zo2]) with 8 parameters:

i =1iz+ D2+ E2*z + Fzz* + GZ°,
where z =z + 1y, D =d, +idy, E = e; +iey, F = fi +ify, G = g1 + igo.

It is known (see [Z02]), that the components of the center set in this case
are

Re(E) =3D + F = 0; (@)
Re(E) = Im(DF) = Re(D*G) = Re(F?G) = 0; (Ch
E=D-3F=|G|-2|F|=0. (Cs)

In usual notations on R? we get the following system:

Tt = —y+(di+e+fi+ 91)553 +(=3dy —es + fo + 392)$2y
+(e1 — 3dy + f1 — 3g1)xy’ + (ds — es + fo — g2)y°

g = x4 (da+er+ fotga)r’ + (3di+ e — f1 — 3g1)’y
+(eg — 3dy + f2 — 3g2)xy* + (—di +e1 — fL + q1)y°

18



The center conditions are as follow:
e1=0,3d+fi=0,3d— fo=0 (&)

e1 =0, difa+dafi =0,
digy — dsg1 — 2d1dago = 0, (CH)
ftgr — fa91 +2f1f292 = 0,

€1 = 0, €y = 0,
{d1—3f1:0, dy +3f, =0, (Cs)
gi+g =4t +13)
We shall find the direct representations of Symmetric and Hamiltonian
components as a composition, and we shall show that in general case Darbu
component can not be represented as a composition.

2.6.1 Composition conditions for the Hamiltonian com-
ponent (CH)

Lemma. In Hamiltonian case the system has the form

& = —y+(=2d; + g1)r® + (—ey + 3g5)2%y
+(—6d; — 391)$y2 + (4dy — €9 — gz)yg

§ = o+ (4dy + es + g2)a® + (64, — 3g1)z’y
+(es — 3g2)zy” + (2d1 + g1)y°

and there exists a composition of the form

Qo) = 5(P(9) — 3(4ds + €3 + ) P(¢).

Proof: After running Mathematica we get

P = (6dy + 392/2 — 6d5 cos 2x — (3/2) gy cos 4x — 6d; sin 2z + (3/2)g; sin 4x),
Q = (1/8)(16d?—16d%—16dyes+g7 —16dsga—4desga—g3)+(1/8) (16dzey cos 22—
8d1 g1 cos 2x+8d;y gy cos 2$—16d% cos 4x+16d§ cos 4x+4es gy cos 4x+8d1 g1 cos 6+
8dy gy cos 6 — g7 cos 8T+ g3 cos 81 +16d, e, sin 2z —8dy g, sin 2x —8d; g, sin 2T+
32d,dy sin 4z — 4ey gy sindx — 8dyg; sin 6z + 8d; gy sin 6 — 2¢; g, sin 8x).
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Now to choose A in the representation Q(z) = 3(P*(z) + AP(z)) we
substitute z = m/2, we get P = 12ds, Q = —4ds(e3 + g2), hence

1
Q) = §(P2(90) — 3(4dy + €2 + g2) P(9)).
|
2.6.2 Composition conditions for the Symmetric com-

ponent (CF)

Lemma. In symmeltric case after special rotation/rescaling of the plane there
exists a composition with either sinx or sin 2x.

Proof:
1. Let D # 0, then after transformation z = Re**u we can assume D = 1,
iie. dy = 1,d2 = 0. Then from conditions on coefficients (CF) we get

fo = g1 = 0, and after computation of P, () we see that both of them are
functions of sin 2z.

2. If D =0, then G # 0, so we may assume G = ¢, and in this case after
computation of P and ) we get that both of them are functions of either
sin2z (if f, = 0) or cos2z (if f; = 0), which is in turn composition with
sinz.

2.6.3 Composition condition for the component (Cj)
does not hold

In usual notations on R? this component is given by the following system:

i = —y+ (4f1 + g1)z® + (10fy + 3g2)2%y
+(—8f1 — 3g1)zy® + (=2f2 — g2)¢°

g = x4 (=2fs+ g2)2* + (8f1 — 3g1)2’y
+(10f5 — 3g2)zy” + (—4f1 + g1)y°

with an additional relation on coefficients: g% + g5 = 4(fZ + f2)).
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We compute using only the first four of the 5 equations, and get
P =2fy+ (3g2)/2 — 2fycos 2x — 3/2gs cos 4z + 2 f1 sin 2z + 3/2¢; sin 4z),
72 f2g3 cos 2x+48 f2 cos 4x—48 f2 cos 4x—8 f1g; cos 6x+8 f5gs cos 6z—3g? cos 8x+
393 cos 8T+T2 fog1 sin 20—T2 f1go sin 22+96 f, f5 sin 4x—8 fo g1 sin 62—8 f1 go sin 62—
69192 sin 8z),
where there is one additional relation on coefficients:

9 + 95 = 4(f1 + f3)

Using simplification under planar transformation (assuming F' = 1 or
F =0), we used symbolic computations to get a composition representation
with polynomials of the first (asinz+ (3 cos —3), second (o sinz + (31 cos x +
agsin2x + fycos2x — By — fo) and the forth (simply aP) degrees. In all
these cases we got contradiction. This proves that P and ) do not have a
common composition factor.
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Chapter 3

Poincare return map for Abel
differential equation and
computations of center
conditions

3.1 Introduction

We consider Abel equation

y' = p(x)y’ +q(z) v’ (3.1)
with p, ¢ — any analytic functions. We can fix any pont a instead of 27 and
ask the same question: Under which conditions on p and ¢ are all trajectories
“periodic”, i.e. any trajectory starting at 0 with the value y, assumes the
same value 7, at a.

In this chapter

e as in [BFY1], we write down recurrence relations for coefficients of
Poincare return map;

e using these recurrence relations, we compute several first coefficients
manually and find out generators of coefficient ideals;

e we describe an algorithm to find these generators using “Mathematica”
symbolic computer system.
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3.2 Poincare return map for Abel equation
and recurrence relations

We may look for solutions of (3.1) in the form of Poincare return map

y(x, yo) yo—{—ka z, )y (3.2)

where y(0, o) = yo, A = (A1, Ag, . . .) is the (finite) set of the coefficients of p,
q. Shortly we will write vg(z).

Then y(a) = y(a,yo) = yo + Z ve(a)y¥ and hence the condition y(a) =
k=2
y(0) is equivalent to vi(a) =0 for k = 2,3, ...

One can easily show (by substitution of the expansion (3.2) into the equa-
tion (3.1)) that vi(z) satisfy recurrence relations

vo(z) =0

vi(z) =1

v,(0) =0 and (3.3)
vn(z) = p(z) Z vi()v;(z) + a(z) Z vi(2)vj(z)ve(x), n > 2

It was shown in [BFY1] that in fact the recurrence relations (3.3) can
be linearized, i.e. the same ideals I, = {vi,vs,...,v;} are generated by
{¢1(x),...¢¥r(x)}, where ¢ (x) satisfy linear recurrence relations

Yo(z)
% (z)
¥n(0)
Y (z) =

xz

0
1
0 and (3.4)

—(n = D¢ (2)p(z) = (0 = 2)¢Pns(2)g(z), n > 2

which are much more convenient then (3.3).
Direct computations (including several integrations by part) give the fol-
lowing expressions for the first polynomials v (z), solving the recurrence
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relation (3.4) (Here we denote P(x) = /Ozp(t)dt, Qz) = /0I q(t)dt) :

Vo ()
¥3(z)

Ya(z)
Vs(z)

Ye(z)

V()

—P(x)
P*(z) — Q()

—PY(2) + 3P(2)Q(z) - / "y PRyt
PA(z) - 6P*(2)Q(z) / S WP (1)t
14P(z) / P+ Q)

—P°(z) + 10P*(z )+ 5P( ac)/

—8Q%(z)P(z) - 10P*(z) / A(t)P(H)dt + 4Q(x) / o(t) P(t)dt

0 0

- [Cawpwie+; [ @
PS(z) — 15PX(2)Q(a )—/mP‘*() (t)dt

0

+(5Q(x) — 15P%(x) )/ (t)dt + (20P3(x)
_2P(2)Q(x)) / P(t)q(t)dt + 6P (z) / " ()P byt

0

—3P(x / Q*(t) dt+2(/

49

—2Q(@) + S P@)Q ) + / POp()Q (1)t

and similar much more longer expression was obtained for vg(z).
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3.3 (Generators of ideals I,

Consequently, we get the following set of generators for the ideals Iy, k =
2,...,8,

I, = {P}
13 = {PaQ}

L= (P [or)

L = (P [ [ar)

Iy = {P,Q,/qP,/qPQ,/(qP‘?’— %pQZ)}

I = {P,Q,/qP,/qP2,/(qP3 - %pQZ),/(qP‘l —2PpQ*)}

ko= (0 [ap [aP [P - 5p0"). [Pt 3Pp?),
/ (4P~ 5Q° — 23P*Qq — TTP%g / Pg)}

Notice that in Ig for the first time a multiple integral (namely, [ P?q [ Pq)
appears.

These generators were first computed by Alwash and Lloyd in [AL], us-
ing the nonlinear recurrence relation (3.3), and recomputed now using the
recurrence relation (3.4).

The problem to find generators of ideals I, was studied also from com-
binatorial point of view by J. Devlin ([Devl], [Dev2]). We tried to write a
program to find all the generators, using symbolic computations with “Math-
ematica” software.

The difficulty lies in that the general formula for ¢, (x) cannot be deduced.
Respectively, we can compute v, (z) using the computer, for each given p(x),
q(z), but we cannot compute the formula for a general symbolic form of p(z)
and ¢(x), except for the formula with (k — 1) integrations for the k-th term.
But using integration by parts we can reduce the complexity (the number
of integrals) in the general formula, as demonstrated in section 3.2. We
attempted to write a program which could compute integrals in a symbolic
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form using integration by parts. This work was done together with Oleg
Lavrovsky, working on this summer project under my supervision.

Mathematica is an integrated technical computing system that allows for
numerical and symbolic computations of high complexity. However, there
are no libraries that would facilitate manipulation of symbolic functions due
to the following two difficulties:

a) p(x), g(x) are symbolic functions, making the use of standard Integrate[]
and Differentiate[] functions of Mathematica inapplicable;

b) an interface is necessary for allowing the user to specify the transformation
or exclusion of components during the iteration, because there is a certain
reasonable limit on the complexity of transformations that we define. Un-
ending switching loops often rise between two or three possible formats of
expressions as the computer is unable to decide on a result above ¥3(z).

To overcome the first difficulty, we created a new set of functions. The
function i [ ] is used to represent an integral (replacing the standard function
Integrate[]) and dv[], correspondingly, the default function Differentiatel[].

We compute using recursive function

f[n_]:=f[n]=(1-n)i[Expand[p f[n-1]1]1-(n-2)i[Expand[q f[n-2]]1]

with initial conditions £[0] = 0 , f[1] = 1.

We start with the functions p and ¢ as arbitrary symbols, we introduce
the complimentary set P and @ so the output f[n] will contain only p, ¢,
P, @ and integration operation i[ ].

dv[P] :=p
dv[Q] :=q
ilp] :=P
ilq] :=Q

Within the Mathematica “kernel” expressions of f[n] are traced back
until the first defined values (£f[0] and f[1]) and each successive expression
calculated from therein and stored.

The main set of transformations was defined in this fashion:

ilx_ + y2] := i[x] + ily],
dvlzx_ + y_1 := dv[x] + dvly],
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dvlx_ y_] := dv[x] y + dvly] x,
ifdvl x_11:=x, dv[ilx_1]:=x,
il p PP(nl)]:=(1/(n+1)) P (n+1)

etc
Using these rules, if Mathematica encounters an expression such as

. ilp + q + ilp P~211...,

it transforms it in the following way:
i[p] + ilq + ilp P*P]1]...=...ilp] + ilql + ilp P*P]...=
... P+Q+ (1/3) PxPxP...
This continues until the rule is no longer applicable. To overcome the
second difficulty we define integration by parts as

ilp B_.] := P B - i[P [dv[B]l]] /; Test;

where B is any expression. Test represents a procedure to display a
prompt for accepting or denying transforming of the given expression. Note
that it was critical that the ordering of these expressions for execution was
carefully determined during analysis of such problems, so that the passing
of conversions should follow effective sequences. As we can apply many dif-
ferent integration by parts (taking different expressions as derivatives under
integration sign), this step requires some complicated testing procedures.

A set of functions was also added that allows the user to choose terms
to break down further, again progressing the formula into a more prefer-
able form. This was based on separately transforming the chosen terms and
inserting the result into the general expression, then simplifying.

The developed algorithm proved to be successful in the evaluation of
() in the extent of comparison with currently known expressions (up to
k =T7), and had the required integral complexity in higher expressions. For
comparison, the manual computation of ig(x) takes many hours, program
compute it during several minutes. The work on the algorithm is not finished,
as for ¢ (z) with larger £ we have a choice of many expressions to integrate
by parts, and Test procedure must be done much more complicated.
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Chapter 4

Center and Composition
Conditions for Abel differential
equations with p, ¢ —
trigonometric polynomials of
small degrees

4.1 Introduction

As it was shown in [Chl], starting from homogeneous perturbation Fy(z,y),
Ga(z,y) of degree d, we obtain Abel equation with p, ¢ — homogeneous
polynomials in sin x, cos x of degrees d+ 1, 2d + 2 respectively. It means that
the lowest degrees of trigonometric polynomials in (1.2), related to dynamical
system (1.1), are 3 and 6 respectively. The center conditions for them are
known, and they are not restricted to the composition conditions.

One can consider Abel equation

y = p(2)y’ + q(2)y’ (4.1)
with p(x), ¢(x) — arbitrary trigonometric polynomials, i.e. polynomials of any
degree. As before, Center Condition for Abel equation is periodicity of
solutions y(x) between two specified points 0 and 27, i.e. y(0) = y(27) for
all solutions y(x) starting at 0 with sufficiently small initial value y(0).
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As before, composition condition in the form P(z) = P(W (z)), Q(z) =
Q(W (z)) for some function W (z) with W (0) = W (2n) is sufficient condi-
tion for the center.

The question “when center and composition conditions coincide” can be
stated for any functions p, ¢. For p(x), ¢(z) — algebraic polynomials in z of
the form a,z" + a,_ 12" ' + ... + ao this question was studied in [BFY2-3,
BY1], and the following Composition Conjecture was stated: for alge-
braic polynomials p, q composition condition is not only sufficient, but also
necessary for the center. The computational verification for p, ¢ — algebraic
polynomials of small degrees was done in [BY1].

We consider trigonometric polynomials in a general form

deg p(¢)

p(p) = Ao+ Z (Aak—18in(kep) + Aok cos(kp)). (4.2)

k=1

Such representation is unique, since the functions 1, cos ¢, sin ¢, cos 2¢, sin 2¢, . . .

form a basis in the space of all trigonometric polynomials. As the degree of
trigonometric polynomial the maximal d was considered, such that Ay
or \yq_1 is not equal to zero. As free term we consider ).

In this chapter we show that for small degrees of trigonometric polynomi-
als p, ¢ (up to 2) center condition implies composition condition. All these
composition conditions will be directly written down. Part of computations
was done together with M. Kiermaier, working on this summer project under
my supervision.

We decided to present below the results of out computations in a rather
detailed form, in a hope that these results can clarify a general structure of
center conditions in a trigonometric case.

4.2 Computational approach

We prove the following theorem:

Theorem. For p, q up to degrees 2, composition condition is not only
sufficient, but necessary for the center.
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To prove it we will compute subsequently coefficients 1 (x) of Poincare
return map

y(z, %) =0+ Y Yl Ny,
k=2
and after substitution x = 27 we will look for conditions on coefficients
Ai, p; under which ¢ (27) = 0. The integration of trigonometric functions
works very slow in “Mathematica”, so to increase the speed of computations
a function integ was introduced, which replaced the standard Integrate
procedure of Mathematica:

$RecursionlLimit=2000;

integly_ + z_,x_]:=integly,x]+integlz,x];

integlc_ y_,x_]:=c integly,x] /;FreeQlc,x];
integlc_,x_]:=c x /;FreeQlc,x];
integ[x_"n_.,x_]:=x"(n+1)/(n+1) /;FreeQ[n,x]&& n !'= -1;
integ[Sin[a_ x_],x_]:=-Cos[a x]/a +1/a /;FreeQ[a,x];
integ[Cos[a_ x_],x_]:= Sin[a x]/a /;FreeQ[a,x];
integ[Sin[x_],x_]:=-Cos[x] +1 ;

integ[Cos[x_],x_]:= Sin[x] ;

Then we use TrigReduce to reduce trigonometric expressions to the form
where integ can be applied.

psilx_1[il=
TrigReduce [integ[TrigReduce [-(i-1)*psi[x] [1-1]*p[x]-(i-2)*psi[x] [1-2]*q[x]1],x]1];

After computing first several equations ¥, (27) = 0 we prove that these
conditions imply composition representability of P(¢), Q(¢), and hence im-
ply center.

Let us fix notations we work with. Let us notice, that integrating (4.2)

2w 2w
w.r.t. ¢ and taking into consideration / sint dt = 0, / cost dt =0 we
0 0
got that p(p), ¢(¢) do not have free terms, i.e

(

degp()
ple) = D (Mic1cos(p) — Aisin(p))
i=1
) deg q()
9(0) = Y (1aic1 cos(ip) — passin(p)),
\ =1
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which corresponds to the following P, Q:

f

deg p(¢p)
P(QO) = Z ()\21'_1 SiIl(QO) + )\Qi COS(QO) — )\21)
=1
\ deg q(p)
Qp) = Z (12i-18in(p) + pai cos(p) — i)
\ =1

Notice, that in contrast to the polynomial case, the degree of trigonomet-
ric polynomial does not change after integration or differentiation.

4.3 Center conditions for p, ¢ of small de-
grees

4.3.1 Center conditions in the case when either p or
q is of the degree zero

If degree p is equal to zero, then p is a constant, and as free term of p is zero,
p = 0. Then the equation (4.1) becomes

y' = qu(z)y’.

Lemma 4.3.1 The condition Q(2m) = 0 is necessary and sufficient for the
existence of a center.

Proof: This equation can be solved explicitly:

!

y NN .1 B
43 = q(=), (—2y2> = (Q(x)), 22 + Q(z) = Const,

substituting z = 0 we get Const = Now it’s obvious, that the center

1
2y(0)
condition y(0) = y(27) is equivalent to Q(27) = 0. W

If the degree of ¢ is equal to zero then similarly we obtain the center
condition is P(27) = 0.

Corollary: If p = 0 (¢ = 0), any trigonometric polynomial q (p, respec-
tiely) without free term defines center. Formally speaking, there exists a

composition with polynomial q (p, respectively).
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4.3.2 Center conditions in the case degp(y) = 1, degq(yp) =
1.

Lemma 4.3.2 For degp(p) = degq(p) = 1 center conditions coincide with
the composition conditions, i.e. there exists center iff P(y) = kQ(y).

Proof: We get:
{P(go) = A1sing + Ay cos o — A
Q(p) = prsin g + p1s cos p — py
Py(2m) = w(=Agp1 + Arpg) = 0 only if A\jpuy = Aypy, therefore this con-

dition is necessary for center. Hence A\ = kuy, Ay = kus for some k& # 0,
hence P(p) =kQ(p). B

4.3.3 Center conditions in the case degp(y) = 1, degq(p) =
2.

Lemma 4.3.3 For degp(p) = 1, degq(yp) = 2 center conditions coincide
with the composition conditions. There are three center components for this
case:

/\1 = 0, M1 = 0, M3 = 0 (12A),

corresponding to the composition with W (p) = cosp — 1,
/\2 = 0, Mo = 0, M3 = 0 (12B),
corresponding to the composition with W () = sin ¢,

e (A=A
A, A\

M1 (120),

corresponding to the composition

U3 9 | Atha + 2Xap3
= P —P .
Qo) =57 P+ —— = P

Proof: We get:

{P((p) = Ay sing + Ay cos p — Ay
Q(p) = pasing + 1y €08 © — fig + p3Sin 20 + 14 08 20 — fig
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We compute the first Poincare coefficients:
Ya(2m) = T(=Agpu1 + A1 p2)
Y5 (2m) = T(2A3 1 — 2X1 dopy + A — A3ps + 22X Aopua)

1. Let Ay = 0, then from ¢4(27) = 0 we get Az = 0. As A\ # 0, pus = 0.
Then from 5(27) = wA\2u3 = 0 we conclude puz = 0. In this case we get
P((P) = )‘1 sin 2

Q) = p1sing + 14 €08 29 — pig = p11 8in @ — 2414 sin® .

So, in this case we get P and () are represented as a composition with
W(p) = sin .

A
2. Let Ay # 0, then from v4(27) = 0 we get pu; = /1\—#2’ hence ¢5(271) =
2

7T(2)\1/\2/,L4 — /,63(/\% — /\%))
2.1. If \; =0, then (as Ay # 0) u3 = 0. In this case
P(p) = Xacosp — Ay,
Q(p) = pa cos p— g+ 1y €S 2¢0 — prg = (o +4u4)(coscp—~1)+2u4(cos<p—1)2.
So there is a composition with W(p) = cosp — 1, P(W) = MW and
QW) = (u2 + 4pg)W + 2M4W§- ,

p3(A3 — AT)
2.2. If \{ #0, th =——= "7

1 7£ ) Cn iy 2)\1)\2

In this case we get
P(p) = A1sing + Agcos — Ay

/\1/@ . . /Lg()\% - /\%) /1;3()\% — /\%)
— _ 2 /o2 U 29— 22 Tl
Q((p) )\2 Sin @ + Mo COS © M2 + M3 S1n 2 + 2)\1)\2 COS 2z 2)\1)\2

Let’s look for the composition condition Q(¢) = a P*(p) + b P(p). Sub-
stituting P and () into this equation, we obtain:

M3 _ A1pa + 2A2p3
AAs A1 g

4.3.4 Center conditions in the case degp(y) = 2, degq(p) =
1

Lemma 4.3.4 For degp(p) = 2, degq(p) = 1 center conditions coincide
with the composition conditions. There are four center components for this
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case:
)\1 - 0, )\3 = 0, M1 = 0, (21A)

corresponding to the composition with W (p) = cosp — 1,
)\2 - 0, )\3 = 0, Mo = 0, (21B)

corresponding to the composition with W () = sin ¢, and

_ o As(ps — )
- y M — T o

A
' 2 2401 fha

(2.1.0)

corresponding to the composition

A3 H1Ag + 2193
Plp) = —Q*(p) + ————
L 2 [ 2502%)

Q(p),

Ezxchanging A\, and py, we get that these representation coincides with the
composition representation for degp(¢) = 1, degq(p) = 2. As the composi-
tion condition is symmetric for these two cases, so the composition represen-
tations must be symmetric as well.

Proof: We get:

{P(go) = Asing + Agcosp — Ay + A3sin2¢ + Agcos2p — Ay
Q(p) = p18in @ + pg cos p — pu

Computing the first Poincare coefficients, we get:
Ya(2m) = m(=Aopi1 + A1pin)
¥s(27) = T(2A 301 — A dspn + Ao Aaps — 2M1 Ao + Aadape — 3A1 Aqps)
1[16(277') = %71'(—3/\%/\2/14 — 15/\:2;/,61 + 12/\1)\2/\3/111 — 6/\2/\:2;/14 — 12/\%/\4,&1 +
12/\1/\3/\4/14 — 6)‘2/\421/1‘1 - 2)\3#% + 3/\:;)/112 + 15A1/\%/1J2 — 12)\%)\3/112 + 6/\1/\:2:’/1@ +
361 Ao Aatte — 1220 A3 A4 ft9 + 30A A2 g + Ao a1 fhy — dAgfiy o — A 3 + 2X33)

1. Let Mo = 0, then )\2/1,1 = 0, SO )\2 = 0. From 1/15(271') = 7T)\1)\3/L1 =0
we obtain either A3 = 0 or Ay = 0. In the first case P and () are represented
as a composition with sinz. In the second case from g(27) = 0 follows

A3 = 0, so it is the same case.

by
2. If puy # 0, then from 94(21) = 0 follows A, = “2PL. In this case

M2
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A
Ps(2m) = ﬂ(—?)\uﬁl/};z + A3 — Azul), so we obtain the following cases:
12%)
2.1. If uy =0, then A\3 =0, and
P(p) = Aacoso—Ag+Agco82¢0— Ay = 2X4(cos p—1)2+ (A +4My)(cos p—1),
Q(¢) = pa(cosp — 1), so we get composition with W () = cos p — 1.
sy — 1) . _ Ao
2.2. If py # 0, then \y = —————= remind that \; =
21 o H2
Ag i

Ag iy
cos 2¢p — ,
M2 M2

. In this case

P(g) = 2

2
Q(p) = pasin g + py cos o — iy,

solving the equation P(x) —a Q(x)* —bQ(z) = 0 with respect to a and b, we

2
found a = —— p = —/\2/“ + 2sht2

1o ’ A1 g
[ |

sin @ + Ay cos @ — Ay + Az sin2¢p +

4.3.5 Center conditions in the case degp(y) = 2, degq(p) =
2.

In this case P and @ are of the form
P(p) = Aising 4+ Agcos — Ay + Azsin2¢ + Ay cos2p — Ay

Q) = prsing + py COs © — iy + 3 SiN 20 + 14 COS 20 — iy
Without loss of generality we can shift z on «, then coefficients p and ¢
of the Abel equation will be changed: p(z) — p(z + «), q¢(z) — q(z + ).
© ©
Then Pe.,(¢) = / Prew(X)dx = / p(x+ a)dr = P(z + o) — P(a) =
0

0
—2 cos asin a+2 cos a:sin o cos 2x—sin A +sin a0 cos TA; —cos aAy+CoS a coS LAy —

cos? adg+sin? ag+cos? a cos 2z —sin? o cos 22\, +cos ad; sin z—sin a)s sin 2+
cos? asin 2z — sin? asin 2z — 2 cos asin )y sin 2z =
cos (A1 sin & + Ay cos &) + cos 22(2 cos aesin a + Ay cos? a — Mg sin® @) + . . .,
so we can kill any term by a shift on an appropriate angle «.

Using shift, we can put any coefficient being equal to zero, let A3 = 0,
then using rescaling, we get A, = 1 (both of them can not be zeroes, since
the degree of P is 2).

Lemma 4.3.5 For
P(p) = A1sing 4+ Ay cos @ — Ay + cos 2 — 1
Q@) = pysing + pig cos o — pg + 3 sin 2¢ + 14 c0S 20 — fu4
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the necessary and sufficient conditions for the center is either P is propor-
tional to Q, or both of them are functions only of sin ¢ or cos .

1
Proof: From ¢,(27) = m(—Agp1 + Ao — 2u3) = 0, we find pz = 5()\1/@ —
A1), substituting it into 15(27) we compute
b
Ys(2m) = 5(/\3M1 + Apia(=2 + A1) = MAJpg — Aopna (2 + AT) — 4y pug)

Now we have several cases:
1. Ay =0, then ¢5(27) = gAgul(/\g —2), 80
1A. \y =0, then pu3 = 0, and

{P((p) =cos2p—1
Q(@) = [11 SIN  + 9 COS @ — g + [44 COS 20 — Ly

Computing 1¢(27) we get either u; = 0, or us = 0, and in both cases we get
the composition - with cos ¢ and sin ¢ respectively.
1B. p; =0, then pz =0,

{P((p) = X2cosp — Ay +cos2¢p — 1
Q@) = 1208 Q — phy + f14COS 20 — p1y’

and we get composition with cos ¢.
1C. Xy = +V/2, then (for positive value)

{P(gp) =/2c0s2¢ — V24 cos2p — 1
Q(p) = prsing + g €os @ — pig + 13 i 20 + 14 €08 20 — 14

Performing computations, we get u; = 0, and it is a composition with cos ¢.

1
2. Ay = 0, then ¢5(27) = §7r/\1u2()\f —2)), so either A\; = 0, or puy = 0,
or \; = +v/2. In each of these cases, as above, we get composition with

either sin ¢, or cos .

3. A\ #0 and )y # 0, then from 95(27) = 0 we get

1

4= —m((/\% — A3) (Mg — Aaptr) — 2(Aapts + A1pa))

1
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Substituting it into the program, we get

Yo(2m) = L (mda = M)

(1 (AT + 25 —2) = A}(6Ag + pa) + Mi(6Ag — 6AF + 245 — Apo)
(=2 + A7+ A3)

Solving the equation ¥g(27) = 0 with respect to ui, we get the following

cases:

A
3A. iy = ;\_Mz’ then ps3 =0, so
2

P(p) = Aising + Agcos ¢ — Ay +cos2¢ — 1
Q(‘ﬂ) = /\}\%SHWH'IJQCOSQO—M2+u40052<p—/1,4'

Then from 95(27) = 0 we get either A\; = 0, and then P, @) are compositions
with cos ¢, or py = Aopg, then py = Ajpg, and QQ = uyP, i.e. we again get
composition.

3B. If \? + A2 # 2, there is another solution

= A3(6Ag + p12) + Aa(6Xg — 6A3 + 2415 — A2pus)
" Aa(—=2+ A2+ A2)

-1 2 2
Then (27) = 37?1; - ; il;;?) ((6 — 13A\] +8AD A + (=11 4+ 1221 A3 +
- 1 2

ANS 4 2(2 = 30T + M) + 2(=3 + 223 A2y + 2054s).

From v7(27) = 0 we find

(6 — 1302 + 8AD) A2 + (—11 4+ 12AH)A3 + 4)3
2(2 =322+ A1) + 2(—3 + 2A2) A2 + 2)\3

U2 = —

For these values of p and A all polynomials up to %7(27) vanish, and we

compute s(27), 1o(27),110(2m).

After standard computation of resultants (see [B1] or section 5.2 of this
thesis for short explanation of resultants technique), we obtain that these
three polynomials do not have common zeroes. W
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Chapter 5

Center and Composition
Conditions for Abel differential
equations with p, ¢ — algebraic
polynomials of small degrees

5.1 Introduction

In this chapter we summarize results on Abel equation with p, ¢ — algebraic
polynomials, which were obtained in [BFY1-3, BY1], in the authors M.Sc.
thesis and in the current Ph.D. thesis. All the results, for which an explicit
reference is not given, are new and belong to the current thesis, so they are
given with proofs.

We consider Abel differential equation

y' = p(@)y® + q(z)y’ (5.1)
with p(z), ¢(x) — algebraic polynomials in z. Although this problem does
not correspond directly to the classical center problem on a plane (where p,
q are trigonometric polynomials), it represents a significant interest by itself,
as it helps to understand the “combinatorial” structure of the set of closed
solutions. A center condition for this equation (closely related to the classical
center condition for polynomial vector fields on the plane) is that for fixed
points 0 and a and for any solution y(z) yo = y(0) = y(a) , i.e. all the
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solutions return to the initial value on the interval [0, a]. (Following [BFY?2],
it is convenient here to fix the first point of the interval at 0.)
As before, we are looking for solutions of (5.1) in the form

y(@,90) =y + Y vk(z, Ny,
k=2

where y(0, o) = yo, A = (A1, Ag, .. .) is the (finite) set of the coefficients of p,
q. Shortly we will write vg(z).

The coefficients v, are computed by formula (3.4) and turn out to be
polynomials both in z and A. We study the polynomials ideals I, C R[A , z],
I, = {vs(z),v3(z), ... vx(z)}. The problem is to find conditions on p, g,
under which x = a is a common zero of all I;.

Following [BFY2] we introduce periods of the equation (5.1) as those
w € C, for which y(0) = y(w) for any solution y(z) of (5.1). The generalized
center conditions are conditions on p, ¢ under which given a4, ..., a; are
(exactly all) the periods of (5.1).

The ideal I C C[A, z] is studied, where A is a set of coefficients of poly-
nomials p, q.

I =A{vy(x),v3(z),...v(x),...} = U It,, where I, = {vs(x), v3(z), ... ve(x)}.
k=2
Our generalized center problem is the following:

For a given set of different complex numbers a; = 0, aq, ..., a, find conditions
on algebraic polynomials p, q, under which these numbers are common zeroes
of I.

We say that (5.1) defines center on the set of numbers as,...,a, . These
numbers are called periods of (5.1), since y(0) = y(a;) for all the solutions

y(x) of (5.1).
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5.2 Composition conjecture for multiple ze-
roes and its status for small degrees of p
and q

The following composition conjecture has been proposed in [BFY2]:

oo
I = U I has zeroes aq,as,...a; , a; =0, if and only if
k=1

P(a) = [ sttt = POV (), Qo) = [ a0t = Q¥ (z))
0 0
k
where W(z) = H(x — a;)W(z) is a polynomial, vanishing at ay, as, . . . a,
=1
and P, Q are some polynomials without free terms (W (z) is an ar-
bitrary polynomial).

Sufficiency of this conjecture can be shown easily (see [BFY2]). But we
still do not have any method to prove the necessity of this conjecture in
the general case, although the connection between this conjecture and some
interesting analytic problems was established (see [BFY1], [BFY2], [BFY3]),
and for some simplified cases it was partially or completely proved.

The following work was started during M.Sc. thesis [B1] and was com-
pleted during Ph.D. thesis:

a) The maximal number of different zeroes of I, i.e. the maximal number
of periods of (5.1) was estimated (this result was proved in M.Sc. thesis and
is implicitly contained in computations, given in [BFY3]).

Theorem 5.2.1 FEither the number of surviving different zeroes (including
0) of I is less or equal then (deg P + deg Q)/3, or P is proportional to Q.

Corollary: Fither P is proportional to QQ, or the number of different peri-
ods of (1.2) is less than or equal to ((deg P + deg @Q)/3) — 1.

b) The above stated composition conjecture was verified for the following
cases:
(deg P,deg Q) = (2,7),(3,4),(4,2),(4,3),(4,4),(5,2),(6,2),(3,6). It was
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done using computer symbolic calculations with some convenient represen-
tation of P and @ . Computations for the cases (deg P,deg Q) = (2,7), (3, 6)
were performed together with Jonatan Gutman and Carla Scapinello, work-
ing on this summer project under my supervision. The computations are
given in [B1], [BY1]. Namely, the following theorem was proved:

Theorem. For the following cases the composition conjecture is true and
the following table gives the possible number of different periods in each case:

deg P 2 3 4 5 6
deg Q
2 0,1] 0 0,1 0 0,1
3 0 (0,2 0
4 0,1 0 |0,1,3
5 0
6 0,1]0,2
7 0

The proof consists of computations of several first ¢, (z) for each of the
cases considered, equating ¥, (z) to zero and solving the resulting systems
of polynomial equations on coefficients of p and ¢ and on a. It was done us-
ing computer symbolic calculations using the special representation of P and
Q. In most of the cases straightforward computations were far beyond the
limitations of the computer used. Consequently, some non-obvious analytic
simplifications were used.

For computations we used resultants technique. Resultants provide us
with a convenient tool for checking, whether n+ 1 polynomials of n variables
Pi(x1,...,2,) € C| z1,...,x,] do not have common zeroes.

Consider one example. Assume we are interested whether polynomials
P(z,y), Q(x,y), R(x,y) have common zeroes.

Claim. Let Resultant|[P,Q,z] = S;1(y), Resultant|[R, Q, z| = Sy(y). If
Resultant[S;, Sy, y] # 0, then P, @, R do not have common zeroes.

Proof: Assume there exists common zero (zg,yy) of all polynomials
P,Q, R, then S;(yy) = S2(yo) = 0, hence Resultant[S], Sy, y] = 0. Contradiction.l
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The general construction for n + 1 polynomials of n variables is exactly
the same.

c¢) On this base explicit center conditions for the equation (5.1) on [0,1]
were written in all the cases considered. They turned out to be very simple
and transparent, especially in comparison with the equations provided by
vanishing of vg(1, A). See section 5.3. for detailed description of the center
set.

5.3 Description of a center set for p, g of
small degrees.

Consider again the polynomial Abel equation:

y' =p(@)y’ +a@)y’,  y(0) =y
with p(z), g(x) — polynomials in x of the degrees d1, dy respectively. We will
write

p(x) = gy 2™ + -+ Ao,

q(z) = pax® + - + po,
()\dl, ey A0y Mgy - - /1,0) = ()\’ ,U,) € Qdtdat2

Remind that vy (z) are polynomials in z with the coefficients polynomially
depending on the parameters (\,u) € C¥+%+2 Tet the center set C' C
CH+92+2 consist of those (), u) for which y(0) = y(1) for all the solutions
y(x) of (5.1).

Clearly, C is defined by an infinite number of polynomial equations in
(M) :ve(1) =0,...,01(1) = 0,... In other words, C is the set of zeroes
Y (I) of the ideal I = {v1(1),...,vk(1),...} in the ring of polynomials C[A, y].
In this section we consider I as the ideal in C[A, u| and not in C[ z, A, p] .
We fix one endpoint a, say a = 1.

The table of multiplicities, obtained in [B1, BY1] for the cases in the above
table, gives the number of equation v;(1) = 0, necessary to define C' (i.e. the
stabilization moment for the set of zeroes of the ideals I;(x)). Since both
vg(1) and (1) are polynomials of degree k —1 in (A, i), the straightforward
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description of C' contains polynomials of a rather high degree, for example
up to degree 10 of 9 variables for the case (deg P,deg Q) = (3,6).

The composition conjecture (which is true in the cases considered by the-
orem from section 5.3), in contrast, gives us very explicit and transparent
equations, describing this center set C'. Especially explicit are equations in
a parametric form (see below).

5.3.1. The central set for the equation (5.1) with deg p = deg ¢ = 2 has
been described in [BFY1]. We remind this result here. Let

p(ﬂ?) = )\2.’132 + Al.’I)' + )\0
q(z) = pe® + mx + 1o

Theorem 5.3.1 (/BFY1], Theorem V.1) The center set C C C® of the Abel
equation (5.1) is given by

2/\2 + 3)\1 + 6/\0 == 0
2p9 + 3p + 6y =
Agpty — Aty =0

The set C in C® is determined by vanishing of the first 3 Taylor coefficients
1}2(1) - 0, ce ,1}4(1) =0

5.3.2 Now let
p(.fL') = )\3$3 + /\2$2 + /\1.T + /\0
q(:L') = nix + lo
Theorem 5.3.2 The center set C C C° of the Abel equation (5.1) is given
by
2M o +3A3 =0
2/\1 —/\3+4)\0 =0
p1+2u =0

The set C in C® is determined by vanishing of the first 3 Taylor coefficients
’UQ(].) = 0, e ,’114(]_) = 0.

Proof: By the composition conjecture, which holds for this case, p and

q belong to the center set if and only if P = P(W), @ = uW , where
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W = z(x — 1). So, we may assume Q = px(z — 1), P = aW? + 3W. Thus
we get

@ = pate 1) = B+ s
A A A
P=a(z(z—1)) >+ fz(z—-1) = Zg$4 + 32363 + ?1322 + Aoz
Comparing coefficients of z¥ in both sides of equalities, we get
Ag =4 )\2 = —6a
A1:205+25 )‘0:_5 5
p1 =24 Mo = —H

which is equivalent to the system in the statement of the theorem.H

5.3.3. If
p(z) = Mz + Ao

q() = psx® 4 pox® 4w + po
then similarly to the previous theorem one can prove the following

Theorem 5.3.3 The center set C C C° of the equation (5.1) is given by

2p9 +3pu3 =0
2p0 — p3+4pp =0
Al + 2/\0 =0

The set C in C° is determined by vanishing of the first 8 Taylor coefficients
’1)2(1) = 0, ce ,’U4(1) =0.

5.3.4. Now let
p(z) = Asx® + Mzt + A3z + Aoz 4+ Mz + Ao
q(z) = T + o
Theorem 5.3.4 The center set C C C® of Abel equation (5.1) is given by

5 5 +2)\y =0
105 + 124 + 153 + 20Xy + 307, + 60Xy =0
A3+ 4 +10A; +20), =0
p1+2u =0
The set C in C® is determined by vanishing of the first 8 Taylor coeffi-
cients v2(1) = 0,...,v9(1) = 0.
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Proof: By the composition conjecture, which holds for this case, p and
¢ belong to the center set if and only if P = P(W), Q = uW , where
W = x(x — 1). So, we may assume Q = ux(x — 1), P = aW? + W2 +yW.
Thus we get

pr(r —1) = %xz + UoT

As 6 A s Az 4 A g A
a(z(z — 1) +8 (z(z — 1)) +yz(z—1) = §x6+€4x5+z3$4+§2$3+?1x2+)\0x
Hence

)\5 = 6 )\4 = —1d«

)\3:1204+4ﬁ )\2:—306—6,6
)\1:2ﬂ+2’}/ )\0:—’)’ ’
p1 =24 Mo = —p

which is equivalent to the system in the statement of the theorem.H

5.3.5. If

p(z) = Mz + Ao
a(z) = ps7° + part + pax® + po2® + T + o

then similarly to the previous theorem one can prove the following

Theorem 5.3.5 The center set C C C® of the Abel equation (5.1) is given
by
ops + 214 =0
10,&5 + 12,&4 + 15/,&3 + 20,&2 + 30,UJ1 + 60#0 =0
13 + gty + 1001 + 2019 =0
Al + 2/\0 =0

The set C in C® is determined by vanishing of the first 4 Taylor coefficients
’02(1) = 0, .. ,’05(1) = 0.

5.3.6. Now let
p(z) = A3x® + Az + A1z + Ao,

q(x) = psz’® + pox® + iz + po.
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Theorem 5.3.6 ([BFY2], Theorem 9.2.) The central set C C C® of Abel
equation (5.1) consists of two components CY and C?), each of dimension

4.
CW s given by
33+ 4XA +6X +12X =0
{ ST ° (5.4.6.1)
3ps + 4p +6p1 + 1200 =0
and
A3/J/1 - /J/3A1 =0 (5462)
Aapty — paAr =0
and C® is given by (5.4.6.1) and

{ 33 +2X =0

{ Azply — pi3Ae =0

3 4 2 = 0 (5.4.6.3)

The set C in C® is determined by the vanishing of the first 8 Taylor
coefficients v2(1) = 0,...,v9(1) = 0.

This theorem was proved in [BFY2| using the fact that the composition
conjecture is true for this case. The component (5.4.6.1 & 5.4.6.2) corre-
sponds to the proportionality of P and @, and the component (5.4.6.1 &
5.4.6.3) corresponds to the composition with W = z(x — 1).

5.3.7. Let

p(x) = Moz? 4+ Mz + Ao
q(fv) = M51L"5 + M4$4 + ,L03x3 + ,UQIL'Q + wx + o

then similarly to the previous theorems one can prove the following

Theorem 5.3.7 The center set C C C° of the Abel equation (5.1) is given
i a parametric form by

A2 = 3 A= —2X(a +1)

Ao = a s = b6

ps = —10a(a + 1) ps = 4a(a + 1) + 8aa (5.4.7.1)
po = —6aala+1)+38 p =2aa®*—2(a+1)8

po = af
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or by

( Ha = —% (3)\—):) + 1)
M3 = % (3)\—);0 + 1)2 —|—4§—ZM5
Y = _3“;2% (3A_A; N 1) N Mijz (5.4.7.2)
[ 3A1 = —2); — 6

The set C in C° is determined by the vanishing of the first 9 Taylor coeffi-
cients v2(1) = 0,...,v19(1) = 0.

Proof: We can represent P = AW, Q = aW? + W, where W = z(z —
1)(x — a). Thus
3 2 A 3 ALy
A(2® = (a+1)2° + az) = ST + Ao,
a(z®+ (a+1)°z* + a’2” — 2(a + 1)2° + 2a2* — 2a(a + 1)2%) +
_ M5

ﬁ(m3—x2(a+1)+aac)—Eacﬁ—i-...-i—uox

Comparing coefficients by z* in both sides of equalities, we obtain (5.4.7.1).
After some transformations we obtain (5.4.7.2). (Notice, that Ay # 0 as
leading coefficient.) W

5.4 Composition conjecture for some special
families of polynomials

In this section we generalize M.Sc. thesis results, finding out some classes of
polynomials p, g of arbitrary high degree, for which condition for a center on
a given set of numbers can be explicitly found (and coincide with composition
case).
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Let a; = 0,as, ..., a, be given. Consider any polynomial W (z) vanishing
at all the points a;, j=1,...,¢

Theorem 5.4.1 Assume that for at least one a;, / Wkdz # 0 and
0

/ " Wrds # 0. Polynomials p = W*(a + fW'), ¢ = W"(y + 6W') define
0

center on [0;aq;...;ae if and only if « =~ = 0.

a;
Remark: Notice, that the condition / W*dz # 0 for at least one a;”
0

¢
is satisfied, for instance, for W (z) = H(m — a;), where all a; are different.
=1
Indeed, consider the function f(x) = / W (t)kdt. Ifalla;, j = 1, ..., £ would
0
be zeroes of f(x), then deg f > (k+1)¢. But degW =/, so deg f(x) = kl+1.
We obtain k¢ + 1 > (k + 1)¢, which is not satisfied for £ > 1 .
¢

Similarly one can show that W (z) = H(:c — a;)™ satisfies the condition

i=1
aj

« Wkdzx # 0 for at least one a;” for almost all k£, and so on. So, this

condition is “almost generic”.

Proof: Since ¢»(z) = P(x), the conditions ¢,(a;) = 0 imply o = 0.
Since 13(z) = P*(z) — Q(z), the conditions ¥3(a;) = 0 imply v = 0. W

Theorem 5.4.2 Assume that degW > 2 and for at least one a;

/ W"dx / W"W"dx
det # 0.
/ Wtk gy / Wtk W dy

Polynomials p = W*(a + BW'), ¢ = W"(y + 6W' + eW") define center on
[0;a1;...;a4 if and only if a =~y =€=0.

Proof: The conditions ¢;(a;) = 0imply o = 0. The conditions ¢3(a;) =

48



0 imply

7/ W"-I—e/ wrWw" = o,
0 0

and the conditions 94(a;) = 0 imply
,y/aj Wn—l—k—l—l 1€ /aj Wn+k+1WII =0.
0 0

If the determinant of the system is nonzero, we get that the system has the
only zero solution. l
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Chapter 6

Riemann Surface approach to
the Center problem for Abel
equation

6.1 Introduction

In this chapter Riemann Surface approach to the Center problem for Abel
equation is discussed. This is a convenient general setting, where Abel Equa-

tion
dy _ 2dPG) | Q)

iz 7 T dz Y0
considered on a given Riemann Surface. In this chapter

e we generalize notions of center and composition to the case of Riemann
surfaces;

e following Chapter 3, we show that all the facts about Poincare return
map and recurrence relations to compute its coefficients remain valid
in this setting.

6.2 Abel equation on Riemann Surfaces

Let X be a domain on a connected Riemann Surface and let P and @Q be two
analytic functions on X. For example, for Abel equation related to planar
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vector fields the domain X is a neighborhood of the unit circle S* on C,
Laurent polynomials P and () are analytic on X. We consider the following
Abel differential equation on X:

dy = y* dP +y* dQ (4)

A (local) solution of (A) is an analytic function y on an open set 2 in X,
such that the differential forms dy and y? dP + y* dQ coincide in €.
If = is a local coordinate in 2, (A) takes the usual form

dy 9 3
o= p(z) +y° q(z),

where
d

() = - Pa), a(x) = +-Qa)

Let Y — X be the universal covering of X. The equation (A) can be lifted
onto Y. One can easily show, that for any @ € Y and for any ¢ € C, there
is a unique solution y. of (A) on Y, satisfying y.(a) = ¢, whose singularities
tend to infinity as c¢ tends to zero. In what follows we always assume that
c is sufficiently small, so ¥, is regular and univalued on any compact part of
Y, but in general is multivalued on X.

Definition 6.2.1 Let v be a closed curve in X. We say that the Abel equa-
tion (A) has a center along the curve 7, if for any small c € C 1y, is
uniwalued along 7.

Notice that in this definition it is sufficient to assume that for any suffi-
ciently small ¢ and some a € v, y.(a) = y,(a), where y., is a result of an
analytic continuation of y. along . Indeed, by uniqueness of a solution of the
first order differential equation (A), y.(a) = y.~(a) implies that y. and y.
coincide in a neighborhood of a. Then by analytic continuation . coincide
with y., along the the whole v, i.e. ¥, is univalued.

Definition 6.2.2 We say that (A) has a total center on X, if it has a
center along any closed curve in X.

In particular, this is always the case for X — simply-connected.
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Definition 6.2.3 Let X be a domain on another Riemann Surface, P and
Q be analytic functions on X. Assume there is an analytic mapping w -
X — X, such that P(z) = P(w(z)), Q(z) = Q(w(x)). We say that the Abel
equation (A) on X is induced from the Abel equation

dy =y* dP + y* dQ (A)
on X by the mapping w. We also say that (A) is factorized through X.

Notice, that the words “factorized through w : X — X?” are equivalent to
the words “composition representation P(z) = P(w(z)), Q(z) = Q(w(x)).”.
When we deal with Abel differential equation, we shall use the word “factor-
ization”, and when we deal with P and ), we shall use the word “composi-
tion”.

Lemma 6.2.1 Let (A) be induced from (A) by w. Then any solution y of
(A) is induced from a corresponding solution § of (A), i.e. y =17 ow.

Proof: Let y = y. take a value ¢ at some point a € X. Consider the solution
g, of (A), taking the value ¢ at w(a) € X. By the “invariance of the first
differential”, 7. o w is a solution of (A4), and it satisfies 7. o w(a) = ¢. Hence
locally, 4. o w = y., and analytic continuation completes the proof. B

Corollary 6.2.1 If (A) is induced from (A) by w, and if (A) has a center
along w(7), then (A) has a center along .

Definition 6.2.4 Let a and b be two different points in X. We say that
a and b are conjugate with respect to the equation (A) and with
respect to a certain homotopy class of curves 7, joining a and b
in X, if for any solution y. of (A) with sufficiently small ¢ (y.(a) = c), its
continuation y.. along v satisfies y.,(b) = c. In other words, any solution
of (A) takes equal values at a and b after analytic continuation along 7.

A priori it is not evident that these definitions are natural and that con-
jugate points can appear at all. However, the following proposition gives a
basic reason for their appearance:
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Proposition 6.2.1 Let X, X, P, Q, P, Q, w be as above. Consider two
different points a, b € X and a path v joining them. If w(a) = w(b) and (A)
has a center along the closed curve w(7y), then a and b are conjugate along
v for the Abel equation (A). In particular, if X is simply connected, any two
points a, b with w(a) = w(b) are conjugate along any vy joining them.

Proof: Follows immediately from the last lemma. B

6.2.1 Example: Polynomial Composition Conjecture
in the case X =C, P and () — polynomials in z

Here X is simply-connected, P and Q are analytic on X and hence the Abel
equation
dy _ 2 3 6.1
7 = P@)y + (@)Y, (6.1)

d d
with p(z) = %P(ac), q(z) = %Q(x), has a center along any closed curve 7.

As far as a factorization of (6.1) is concerned, assume that there exist
polynomials w, P, @, such that P(z) = P(w(z)), Q(r) = Q(w(z)). Then
for X = C (6.1) is induced by w from

dy

=Py +Q W)y (6.2)

By proposition 5.2.1, any two points a and b such that w(a) = w(b) are
conjugate along any path 7.

In [BFY1-4], [BY1] and in this thesis this example is investigated in some
details. In particular, in the chapter 5 it is shown that for small degrees of
P and @) conjugate points can appear only in this way.

Now the composition conjecture, discussed above, can be reformulated as
follows:

Polynomial Composition Conjecture: Two different points a and b in
C are congugate for the Abel equation (A) with P, Q - polynomials in z, if
and only if the following Polynomial Composition Condition is satisfied:
there exists a factorization P(x) = P(w(z)), Q(z) = Q(w(z)) with polyno-
mial mapping w, such that w(a) = w(b).
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Notice, that although the equation (A) is non-symmetric with respect to
p and ¢, this conjecture proposes the symmetric condition: if ¢ and b are
conjugate for (A), then they are conjugate also for the equation

Y= 4(a) o7 + 0l o (63

This situation is not unique in the center problem. In [Che2] it was shown
that the Lienard system

2
Lt F@) L+ gla) =0

dx?
has a center at the origin if and only if the functions F(z) = [/ f(t)dt,
G(x) = [ g(t)dt can be represented as a composition F(z) = F(z(z)),
G(z) = G(2(z)) for an analytic function z(z), with 2/(0) < 0.

6.2.2 Example: Laurent Composition Condition in the
case X — a neighborhood of the unit circle S! =
{|]z] =1} C C, P and @ — Laurent series, conver-
gent on X

We may rewrite Abel differential equation in an invariant form

dp = dP(0) p* + dQ(9) p’,

then expressing sin @ and cos @ through z = ¢, i.e.

1

_ xzHx—
cos ) = #H—,
: _ :c—zfl
sinf) = = —,

P=1Y,

we obtain P and @ in the form of Laurent polynomials in z, and the
differential equation is
dy = y*dP + y* dQ
considered on the circle z([0, 27]) = S*.
We shall discuss this case in much more detail in the next chapter, be-
cause it corresponds directly to the classical Center-Focus Problem for ho-
mogeneous polynomial vector fields on the plane.
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The one of possible factorizations in this case, which we shall call Laurent
Composition Condition, takes the form P = P(w), Q@ = Q(w), where w
is a Laurent series, and P, Q are regular analytic functions on the disk D in
C, containing the image w(S").

Lemma 6.2.2 Laurent Composition Condition implies center along S*.

Proof: We have a factorization w : X — D, and since D is simply con-
nected, the Abel equation dy = y?dP + y3dQ on D has a total center, then
by Corollary 5.2.1 it implies center along S'. B

In this case the conjecture that this is the only reason for center is not
true: there are known cases of center along S' for the equation (A), when
p and ¢ can not be represented as a Laurent composition (the example was
considered by Alwash in [A] — see Chapter 2 above).

Nevertheless, for p(z), ¢(z) — Laurent polynomials of small degrees up to
(4,4), i.e. of the form z72(asz* + a3z® + a22® + a1z + ap), the composition
representation is the only possible reason for center (shown in Chapter 4).

6.3 Poincare mapping

Here we discuss notions introduced in Chapter 3, in a more general setting.
Let us return to a general situation of the Abel equation (A)

dy = y*dP +y* dQ

on a Riemann Surface X. Let a,b € X and let v be a curve in X, joining a
and b.

Let us consider a general solution ., of the equation (A) along v, taking
the value ¢ at the point a: y.,(a) = c. For sufficiently small ¢ we may
represent it in a form of a (convergent) power series in c:

Yer(T) =+ Y v, (6.1)
k=2
where v, = vg(a,x,y) are (multivalued) functions on X, z is a point on ~:
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For fixed a, y substituting the solution y..(z) in the form of expansion
Yer(T) = ¢+ D opeyvr(z) ® into (A), we obtain the following recurrence
relation on v (x):

(vo(z) =0
v(z) =1
and for n > 2

< vp(a) =0 and (6.2)

dvn(z) = dP(z) Y vil@)v;(z) +dQ(x) Y wiz)vs(w)ui(x)

\ i+j=n i+j+k=n

Definition 6.3.1 The Poincare mapping ¥, : (C,0) — (C,0) of the equa-
tion (A) along vy is defined by

\117(0) = yc,’y(b)’ (6'3)

where Y. 1S, as above, the solution of (A), taking the value ¢ at the point a,
and analytically continued along v up to the point b.

As it was shown,
Ty(c)=c+ > w(b)c (6.4)
k=2

For X = C, a = 0, b = 1, we obtain the usual Poincare mapping as we
used in Chapter 3.

Lemma 6.3.1 1) The equation (A) has a center along unclosed curve y with
end points a and b (i.e. points a and b are conjugate) if and only if vi(b) = 0
for any k > 2. Here vig(x) (for fized a, v) are obtained by integration along
v of (6.2).

2) The equation (A) has a center along closed curve vy if and only if vg(z)
are univalued functions along .

Proof: Follows immediately from definitions of a center and Poincare map-
ping. W
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The recurrence relations (6.2) can be in fact linearized in the following
sense: Let us fix the curve (and the end-points a and b) and consider an
inverse function (with respect to y and ¢) to y.,(z):

c=y"(2,Yeq(2) =y (z,9)

One can easily see that for sufficiently small ¢ and y we can represent y~* by
a convergent power series

c=y (z,y) =y+ Y el@)y, (6.5)

where ¢ (a) = 0, since y~*(a,c) = c.

Lemma 6.3.2 (BFY1) The coefficients i () satisfy the following recur-
rence relation:

wo(x) =0, py(z) =1 and for k> 2
d‘/’f(;f) = —(k = 1)dP(z)pr-1(z) — (k — 2)dQ(z)pr—2(z) (6.6)
Yr(a) =0

Proof: Write (6.5) as

C—Zwk D)y, 0o =0, 01 =1 (6.7)

Taking a differential of it with respect to = along the solution of (A), we get

0= Z dpi(x)y" + Z kor(z)y* - dy = Z dory™+
k=0 k=0

k=0

Z — 1)dP(2)¢r_1(x) + (k — 2)dQ(z)pr_o(z))y"

k=2
Equating to zero the right-hand side coefficients produces the required re-
currence. l

As it was shown,
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V@) =+ ) pb)e (6.8)

Notice that in our considerations we were free to choose the endpoint b.
It leads immediately to the following

Lemma 6.3.3 (BFY1) For any ¢ > 2, for any b € C the ideals I, =
{v2(b),...,v,(0)} and I, = {p2(b), .., pr(b)} coincide.

Proof: This follows immediately from the standard expressions for the
Taylor coefficients of the inverse function: if y = z + as2? + azz® + -- -,
T =y +byy?+bsy®+ -, then by = —ay, b3 = —az + 2a3,..., ay = —bo,
as = —b3+2bg, [ |

Now we get as the corollary the following theorems:

Theorem 6.3.1 The equation (A) has a center along an unclosed curve 7y
with end points a and b (i.e. points a and b are conjugate) if and only
if or(b) = 0 for any k > 2. Here () (for fized a, ) are obtained by
integration along v of the linear recurrence (6.6).

Theorem 6.3.2 The equation (A) has a center along a closed curve 7 if and
only if all the functions pi(z) are univalued functions along .
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Chapter 7

Factorization (composition) for
the case X CC, P and () —
rational functions

7.1 Introduction

We started from the center problem for vector fields on the plane. It was
reduced to the center problem for Abel differential equation with p, ¢ —
Laurent polynomials. The natural question is to study Abel equation with
p, q — rational functions. Everything, what can be said in general about
rational functions, remains valid for the case of Laurent polynomials.

It turns out that the assumption that P and () are rational functions
puts the composition (factorization) question completely in the framework
of algebraic geometry of rational curves and of the Ritt theory ([R1]). We
show that the examples of Polynomial composition and Laurent composition,
given in sections 6.2.1 and 6.2.2, are in some sense “generic”, and any analytic
factorization of rational function can be reduced to composition of rational
functions.

7.2 Composition and rational curves

The following facts are very basic in algebraic geometry. We restate them
for convenience of our presentation. For details we address the reader to any
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classical algebraic geometry text (e.g. [Shal).

We’ll denote by Y the curve in C? , parameterized by P, Q:

YV ={(P(t),Q()).t € C}.
Lemma 7.2.1 The curve Y for rational P and @ is an algebraic curve.

Proof: We need to prove that for sufficiently large d there exists a poly-
nomial F(z,y) of the degree d, such that F(P(t),Q(t)) = 0. Without loss
of generality we may assume that P and () have the same denominator
R. Consider all the products P(t)'Q(t)’R%, i + j < d. These are polyno-

mials of ¢ of the degrees less than or equal to ideg P + jdeg@Q + ddeg R <
d(deg P+deg Q+deg R). But there exist d(d L such products PiQ?, therefore

for @ > d(deg P+deg Q+deg R), i.e. for d > 2(deg P+deg Q+deg R)+1
there exists a linear dependence over C:

Zﬁ” (t)R(t)* = 0, hence Zﬂ” (t)'Q(t) = 0.

This polynomial F(z,y) = Y B;;x'y’ vanishes on Y. Such polynomial of
minimal degree defines an algebraic curve V. B

Liiroth theorem. Any subfield of a field of rational functions is generated
by a rational function.

Corollary 7.2.1 There ezist rational functions 7(t), P, Q, s.t. P(t) =
P(r(t), Q) = Q(r(t)) and s.t. the map

7:C—=Y, 2+ (P(2),Q(z))

defines a birational isomorphism between C and Y. In particular, Y is a
rational curve.

Proof:

1. Notice that K = C(P(t),Q(t)) is a subfield of the field of rational func-
tions C(t). By Liiroth theorem K = C(r(t)) for some rational function r(t).
In particular, P and @ belong to K, hence there exist rational functions P(t),

Q(t) such that P(t) = P(r(t)), Q(t) = Q(r(t))
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2. It is obvious that 7 is surjective and rational. Let’s prove that there exists
an inverse map 7 ! : Y — C. Since r(t) € C(P(t),Q(t)), there exist a ra-
tional function R(z,y) s.t. R(P(t),Q(t)) = r(t), i.e. R(P(r(t)),Q(r(t))) =
r(t). Obviously it is a rational function from Y to C. Let us prove that
R = 747! Indeed, Roy = id : C — C: R(7(2)) = R(P(2),Q(z)) =
R(P(r(t)),Q(r(t))) = r(t) = z, since for any z there exists t: z = r(t).
Vice versa: yo R = id : Y — Y, since J(R(P(t),Q(t))) = (r(t)) =

(P(r(1)), Qr(1))) = (:() Q). m

Definition 7.2.1 The degree of a map v = (P,Q) : C — Y is the degree
of the algebraic extension [C(t) : C(P, Q)].

Definition 7.2.2 The parameterization of a rational curve Y, v : C — Y
z+— (P(2),Q(z)) is called minimal if degy = 1.

From corollary 7.2.1 it follows that a minimal parameterization defines a
birational isomorphism between C and Y.

Definition 7.2.3 The mapping f : X — Y s called “not 1-17, if there
exists an open set QL C Y, s.t. each point of Q) has more than one preimage
under f.

Definition 7.2.4 A rational function r is called common divisor under
composition of rational functions P and Q, if P = P(r), Q = Q(r). The
common diwisor v is called nontrivial, if r s not 1-1.

Definition 7.2.5 A rational function r is called Composition Greatest
Common Divisor (CGCD) of rational functions P,Q, if r is a common
divisor under composition of P and Q, and if 7 is another common divisor
of P and Q under composition, then r = R(7) for a rational function R.

Definition 7.2.6 The degree of a rational function is a mazimum of
degrees of numerator and denominator.

Let’s notice that among rational functions only linear functions (functions
of degree 1) are 1-1. Respectively, if we are looking for nontrivial CGCD in
the class of rational functions, it must have degree greater than 1. It is easy
to show that CGCD exists and satisfies all the properties of usual greatest
common divisor. In particular,
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Proposition 7.2.1 For any rational functions P(t), Q(t) their CGCD r(t)
exists and 1s given by corollary 7.2.1 CGCD is unique in the algebra of ratio-
nal functions under compositions up to composition with an invertible rational
function (i.e. a function of degree 1), i.e. two CGCD of a given function
can be obtained each one from another by a (right or left) composition with
a linear function.

Proof:
Obviously, 7(t) from Corollary 7.2.1 defines rational common divisor under
composition. If 7 is another composition common divisor of P and @, then
P = P(7), Q@ = Q(7), so C(7(t)) 2 C[P(t),Q(t)] = C(r(t)), hence r(t) =
R(7(t)) for some rational function R. Therefor r(¢) is actually a CGCD.

If 7 and 7 are two CGCD, then 7(t) = R(7(t)), but #(t) = R(r(t)), so
Ro R =1id, hence R is a linear function. W

The following facts are proved, for example, in [Shal:

Lemma 7.2.2 1) For a rational map v = (P,Q) : C — Y the number of
preimages of almost each point is equal to deg-y.

2) [C(t) : C(r(t))] = degr(t).

Corollary 7.2.2 The degree of the map v = [P, Q)] is equal to the degree
of the rational CGCD of P and Q. If r is CGCD of P and Q, P = P(r),
Q=Q(r), theny:C =Y,z (P(2),Q(2)) is a minimal parameterization.

The following two results show that allowing an analytic (and not a priori
rational) composition does not add, in fact, anything new.

Lemma 7.2.3 degy > 1 if and only if there exists an analytic factorization

w:C— X, where X 1s a Riemann Surface, P and Q are analytic functions
on X, such that P(t) = P(w(t)), Q(t) = Q(w(t)), and w is not 1-1.

Proof:

Let degy > 1, then taking w =r : C — C we get the required analytic fac-
torization. Vice versa, let there exist an analytic factorization w : C — X,
P(t) = P(w(t)), Q) = Q(w(t)). Then C(P,Q) = C(P(w),Q(w)), which
is a proper subset in C(t), because w(t) glues some points in C, but in
C(t) there are functions which map these points into different points. Hence

C(t): C(P,Q)] >1. m
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Corollary 7.2.3 If there exists an analytic factorization of rational func-
tions P = P(w), Q@ = Q(w) with w — not 1-1, then there ezists a nontrivial
CGCD of P and Q: P = P(r), Q = Q(r) for T of the degree greater than 1.

7.3 Structure of composition in the case X =
C, P and () — polynomials

We shall prove that the factorization in the form of Polynomial Compo-
sition Condition is essentially the only one natural factorization in the
polynomial case, namely:

Theorem 7.3.1 Assume there exists an analytic factorization P = P(w),
Q = Q(w) with w — not 1-1. Then there exists a polynomial factorization
P(t) = P(i(t)), Q(t) = Q(i(t)), with P, Q, W being polynomials, the degree
of W is greater than 1 and deg(f?, Q) =1.

The proof will follow from the lemma:

Lemma 7.3.1 If we have a factorization P = Por, Q= Qor with P(t),
Q(t), r(t) - rational functions: C — C, then there exists a linear rational
function A\ : C — C, s.t. Po), Qo ), A\ or are polynomials.

Proof:
This proof is contained essentially in [R]. Let r(co0) = a. Let the degrees of
the rational functions r, P be n, m respectively. The degree of the polynomial
P will be mn. Then:
r(c0) = a with multiplicity not more than n, P(a) = co with multiplicity
not more than m, but P o r(cc) = oo with multiplicity exactly mn, because
P or is a polynomial.

Hence we get that 7(co) = a with multiplicity n, P(a) = co with multi-
plicity m.

Now take A(z) = -, i.e. A7!(a) = 0o0. Then P o A(c0) = oo with multi-
plicity n, A= o r(c0) = co with multiplicity m, hence they are polynomials.
Similarly @ o ) is a polynomial. W

Proof of theorem:
By corollary 5.3.3 there exists a factorization P(t) = P(r(t), Q(t) = Q(r(t),
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for some rational functions P(t), Q(t) and rational function 7(¢) of degree
greater than 1, such that deg(P, Q) = 1. Then taking P = Po ), Q = Qo ),
W = \"!or we obtain the required polynomial factorization P(t) = P ((t)),
Q(t) = Q(w(t)) with @ of degree greater than 1 and deg(P,Q)=1. B

The similar fact was proved by C. Christopher in [Chr|, when he investi-
gated polynomial case of Lienard system.

Corollary 7.3.1 If deg[P,Q] = s > 1, then the two polynomials P and
Q have a nontrivial CGCD of the degree s in the algebra of polynomials
under composition: P(t) = P(r(t)), Q(t) = Q(r(t)), with P, Q, r — algebraic
polynomials and degr = s. The map v : z — (P(2),Q(z)) defines a minimal
polynomial parameterization of the algebraic curveY = {(P(t), Q(t)),t € C}.

7.4 Structure of composition in the case X —
a neighborhood of the unit circle on C, P
and () — Laurent polynomials

We describe possible factorization of Laurent polynomials, up to a natural
equivalence.

Definition 7.4.1 The composition representations P = P(F) and P = P(f)
are equivalent if there exists a linear rational function X, s.t. P = P()\),
7= X"L(7F).

Theorem 7.4.1 Up to the equivalence relation of definition 3.8 there are
only two types of composition representations of a Laurent polynomaial P:
(1) P = P(r), where P is a usual (algebraic) polynomial, and r is a Laurent
polynomaal.

(2) P = P(r), where P is a Laurent polynomial, and r = z* for some k € N,
k> 2.

Any two composition representations of types (1) and (2) for degr > 1 and
k > 1 are not equivalent.

Proof:
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P is a Laurent polynomial, hence co has exactly two preimages — 0 and
00. Assume we are given a composition in the class of rational functions:
P = P(7) . We shall show that by choosing a suitable linear rational function
A we obtain P = (Po))o (A" o7), where P = Po ) and r = A~ o 7 are of
the required form (1) or (2).

P may have either two or one preimage of oo.

1) Assume first that oo has two preimages ¢ # b under the map P:
P(a) = P(b) = co. Take a linear function A(2), s.t. A(0) = a, A(co) = b:

Mz) = +b. Then (P o A\)(0) =00, (Po))(c0)=00,s0P =P}

T
a—b
is a Laurent polynomial. Then necessary (A"1o7)(0) =0, (A\"1o7)(c0) = o0,
and there are no other points where A\ !(7) takes values 0 and oo, so r =
A~1(7) is an algebraic polynomial of the form z* for some natural k.

2) If P has only one preimage of oo, then similarly to the lemma 2.9
there exists a linear rational function \ s.t. P = P()) is a polynomial. Then
necessary (A71o7)(0) = oo, (A7'oF)(00) = 0o, and there are no other points
where \7!(7) takes values 0 and co, so A™! o 7 is a Laurent polynomial.

Since under composition with a linear function the number of preimages
of a given point can not change, (1) and (2) are not equivalent. W

Corollary 7.4.1 Ifdeg(P,Q) > 1, then P = P(r), Q = Q(r) with either
(1) Laurent polynomial composition: P, Q — algebraic polynomials, 7 —
Laurent polynomial of degree greater than 1; or

(2) P, Q — Laurent polynomials, v = 2* for k > 2.
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Chapter 8

Moments of P, Q on S! and
Center Conditions for Abel
equation with rational p, ¢

8.1 Introduction

The role of generalized moments of the form [ P'‘Q’dP and [ P'dQ, as re-
lated to the center-Focus problem and composition conditions on the inter-
val, is investigated in [BF'Y2-4], [BY2]. Recently a serious progress have been
done in this direction ([Pal-2|, [Ro], [Chr2]).

In this thesis we restrict ourselves to the case of Laurent polynomials,
and generalized moments on the circle.

It is shown that vanishing of generalized moments f|

PiQidP =0

z|=1
implies center.

8.2 Sufficient center condition for Abel equa-
tion with analytic p, ¢

We return to the case of Abel equation (A)
dy = y*dP + y*dQ (A)

considered in a neighborhood of a unit circle S = {|z| = 1} in the complex
plane C, with P, ) — analytic functions in some neighborhood of S* (not
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necessary Laurent polynomials).

The following theorem is a summary of results due to J. Wermer ([W1],
[W2]). The applicability of Wermer’s results to Center problem was discov-
ered by J.-P.Francoise ([F]):

Theorem (Wermer, 1958) Let P, QQ be a pair of functions on the unit
circle ST C C. Assume:
(1) P and Q are analytic in an annulus containing S' and together separate
points on S*.
(2) P #0 on S*.
(8) P takes only finitely many values more than once on S*.

If [ P'Q?dP =0 for all i,j > 0, then there exists a Riemann Surface
X and a homeomorphism ¢ : S — X, such that p(S*) is a simple closed
curve on X bounding a compact region D, such that functions P, Q defined
on o(S) by P = Poy, Q= Qo can be extended inside D to be analytic
there and continuous in D U p(S!).

To use this theorem for our factorization, we need to replace “homeomor-
phism” by “analytic map of a certain neighborhood of S! into X”.

Lemma 8.2.1 Let S' C C be a unit circle, P and Q be analytic functions
in a neighborhood U of S, such that P' # 0 on S'. Let X be a Riemann
Surface, P and Q - regular functions on X, and let ¢ : St — X be a
homeomorphism such that P = Po @, Q = Qo ¢ on S'. Then ¢ can be
extended as an analytic mapping of a certain neighborhood V- C U of St into
X, with the same property P = Po v, Q= Qo winV.

Proof:

P'(s) # 0, hence P'(p(s)) # 0, s0 P'(y) #0ina neighborhood of ¢(s) on X.
We define () in this neighborhood as y = ¢p(z) = P '(P(z)). Locally ¢
exists and is well-defined. Since these local extensions agree on S!, they in

fact agree and define a required extension on a certain neighborhood of S!.
[

Corollary 8.2.1 If in the Abel equation (A) on C

dy = y*dP 4+ y3dQ or dy=vy*dQ + y*dP
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P and Q are functions, satisfying all the properties (1) — (4) and the do-
main D, provided by Wermer’s theorem, is simply-connected, then the Abel
equation (A) has a center.

Proof:
If P # 0 on S, we may apply lemma 8.2.1. Then the Abel equation (A) is
induced by the analytic mapping ¢ from the Abel Equation on X

dy = y?dP + ¢*dQ. (A)

Since P, Q are analytic on a simply connected domain D bounded by ¢(S"),

the equation (A) has a center along ¢(S'), and hence the equation (A) has
a center along S1. W

Notice, that this condition is a sufficient condition for center for Abel
equation with arbitrary analytic coefficients. But it is symmetric with respect
to P and @, although some of the center conditions for Abel equation are
known to be non-symmetric. Below we shall explain it for the case of P, )
— Laurent polynomials.

8.3 The degree of a rational mapping and an
image of a circle on a rational curve

Consider two rational functions P, Q. The map v = [P, Q] : C — C? defines
the rational curve Y = {(P(t), Q(t)) : t € C}. Image of a circle S* under the
map <y is a closed curve on Y.

Theorem 8.3.1 Let P, Q be rational functions without poles on S*, s.t. at
least one of them has a pole inside S* and at least one of them has a pole
outside S (for instance, Laurent polynomsials). Let v(S') bound a compact
domain in Y. Then deg~y > 1.

Proof:

Assume that degy = 1. Then consider a path x in C, joining two poles of
P and Q inside and outside of S* ( for simplicity 0 and co), and intersecting
S1 only once at a regular point u € . We can assume also that x does
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not contain preimages of double points in Y. So for any z € x there are no
y # v € C with y(z) = v(y).

v(x(z)) tends to oo as z tends to 0 and to oo, so the image of x(z) un-
der the map v : C — Y can not stay inside a compact domain bounded by
v(S'). But it enters this domain, since u is a regular point of . Then it
must intersect v(S*) at another point v # u, and we get contradiction to the
choice of the path v. B

Example 1. P(z) =2, Q(z)= %

The rational curve Y is {zy = 1} C C?, and the curve v(S') does not bound
a compact domain on it. The degree of the map [P, Q)] is one, and it is a
general situation for a map of degree one: images of circles contracted to
poles diverge on YV — see figure 1 with S, = {|z| = k}, S_x = {|2| = 1}
(k € N), and G}, G_j, — their images on Y under v = [P, Q).

Example 2. P(z) =z + %, Q(z) =z+ %

The rational curve Y is {x = y} ~ C, the degree of the map = is 2, and the
curve v(S!) bounds a compact domain on Y (in fact, v(S!) = [—1,1]). See
figure 2 for illustration: images of the circles Sy cover Y twice, because they
“have no space to diverge”. Arrows indicate directions of “motion” of the
curves S and G as k decreases from +o0o to —oo.
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8.4 Center conditions for the case of P, () —
Laurent polynomials

Theorem 8.4.1 If P and Q are Laurent polynomials, satisfying the condi-
tion

/| | PRREraP =0

for all pairs (k,n) of nonnegative integers, and P, Q together separate points
on S', then P and Q can be represented in the form of Laurent Polynomial
composition, and hence the equation (A) has a center.

Remark: We believe that for the case of Laurent polynomials the Wermer’s
theorem remains valid without the assumption that P and () together sepa-
rate points on S'. We are going to present a proof of this fact in [BRY].

Proof:
If both P and @) are algebraic polynomials in z, P and @ are represented as
a composition with z, so we have a center.

Similarly, if both P and @ are algebraic polynomials in %, P and Q) are
represented as a composition with %, so we have a center. Otherwise P and
@ have one pole inside (origin z = 0) and one pole outside (infinity) of S'.

Obviously P, @ are analytic in a neighborhood of S' and take only finitely
many values more than once on S*.

Next, we always can assume that P'(z) # 0 for all |z| = 1. Indeed, (A)
after the change of variables z = Au became

dy

i dP(u)y* + dQ(u)y®, (A)
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where P(u) = AP(\u), Q(u) = AQ(Mu), both (A) and (A) have center
simultaneously. But as P’ has only finite number of zeroes on C, by rescaling
z — Az, which does not change a center for (A), we can assure that there are
no zeroes of P’ on the Circle S'. For example, P(z) = z + 1 has zeroes of P’

on S, but P(z) = 4z — L has not. Under this change of Varlables the circle
|z| = 1 goes to |u| = )\, but by Cauchy theorem for Laurent polynomials
integrals along these circles coincide.

Hence by Wermer’s theorem there exists a surface X and a homeomor-
phism ¢ : S — X such that ¢(S!) bounds a compact domain D on X and
there exist functions P, Q analytic inside D, extending Poyp ! and Qo L.

Remind that we have amap v = [P,Q]: C — Y = {(P(¢),Q(t)) : t € C}.

Lemma 8.4.1 If the curve p(S') bounds a compact domain on X, then the
curve v(S') bounds a compact domain on a rational curve Y.

Proof:

By lemma 8.2.1 []3, Q] o is an analytic mapping, defined in a neighborhood
of S, which coincides there with v = [P, Q]. But hence [P,Q] : X — C?
maps a neighborhood of ¢(S') into Y C C?. By analytic continuation, [P, Q]
maps X into Y. Hence [P, Q] maps a compact domain D inside ¢(S*) onto
Y, and the image of a compact domain under continuous mapping is com-
pact. Hence 7(S?) is contained in a compact [P, Q](D) in Y. Now one can
easily show that in fact y(S!) bounds a compact domain in V. W

Proof of theorem 8.4.1 (continue):

By theorem 8.3.1 deg[P, Q] > 1, hence P and @ can be represented as a com-
position P = P(w), Q = Q(w). If P and Q are usual algebraic polynomials,
we are done.

If not, then P(z) = P(z*), Q(z) = Q(z"*) for Laurent polynomials P,
Q But then on the rational curve ¥ we get [P, Q|(S') = [P,Q](S"), so
P, Q] (S') bounds a compact domain on Y = {(P(t),Q(t)) : t € C} =
{(P(t),Q(t)) : t € C}. Therefore by theorem 8.3.1 deg[P, Q] > 1, so they
are represented as a composition.

If we again obtain their representation as a composition of Laurent poly-
nomials with 2", we repeat our considerations, and finally we are left with

the composition P = P(@), Q = Q(w) with @ — Laurent polynomial, P
and Q — algebraic polynomials. It gives us the composition P = P(w(2V)),
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Q

Q

(w(2Y)), and we are done. B
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Chapter 9

(Generalized Moments and
Center Conditions for Abel
differential equation with
elliptic p, g

9.1 Introduction

In Chapter 8 we considered Generalized moments for rational functions P
and () and have shown that vanishing of all generalized moments implies
composition representability of P and ) and hence center for Abel equation
(A):

dy = y*dP + 4*dQ. (A)

In the proof we essentially used the fact that [P, Q](C) is a rational curve,
i.e. algebraic curve of genus 0.

Suggested generalization is to consider the same question for Laurent
series instead of Laurent polynomials. The first nontrivial case of Laurent
series in our “algebraic” context is the case of elliptic functions. For P, Q) —
elliptic functions we show that all the generalized moments [ P*Q’dP along a
small curve around the origin vanish. But at the same time we demonstrate
that in general Abel equation (A) with P, @ — elliptic functions does not
have a center, in spite of the fact that all the generalized moments on S*
vanish. So an analog of the theorem from [BY2] for infinite Laurent series
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does not hold.

It can be explained by the fact that elliptic curve X = [P, Q](C) is an
algebraic curve of genus 1 and hence it is homologically nontrivial. S* is
embedded by the map (P, Q) into this curve in a homologically trivial way,
and hence all the moments on S* vanish. But the domain, bounded by
(P, Q)(S") is not simply-connected. Hence multiple integrals along this curve
do not vanish, and (A) does not have center.

We start from the simplest case when P is the Weierstrass p-function, )
is it’s derivative. In this case the surface [P, Q](C) is a torus with small circle
around the origin dividing it into two parts: compact topologically nontrivial
part, on which p and p’ are regular (have no poles), and the second part
which is topologically equivalent to C without origin, but p and p’ have a
pole at zero.

9.2 Reminder about elliptic functions and el-
liptic curves

Let us remind the standard notations we will work with. An elliptic function
f is a meromorphic function on C, which is double periodic. Namely, there
exist two complex numbers wi, wy (linearly independent over R), such that
f(z+w1) = f(2), f(z4+w) = f(z) for all z € C. wy, wy are called periods of
an elliptic function. So it is enough to consider f inside the parallelogramm
of periods. It means that we consider f on a torus 72 = S* x S! instead of
the whole C.

The Weierstrass p-function has the only one pole inside the parallelo-
gramm of periods. In local coordinates z around zero on C it can be defined
by the formula

p(z) = =+ Z ¢ 2272, (9.1)

where coefficients ¢; are computed by recursion

1—2
3
o3t Z
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Here the first coefficients are defined as ¢y = ¢2/20, c3 = g3/28, where g, and
g3 depend only on periods w:

1 1
92:6()2;, 93214025, (9.3)

where summation is taken over all non-zero peiods of p.
The following formulas hold:
/2 3 1 2 92
(W) = 4p* = g2p = g5, P =6p" = = (9.4)
The derivative of the Weierstrass function p' is also an elliptic function
with the only pole at the origin. So the Riemann surface [p, ¢/](C) is an affine
curve in €, whose projective compactification is a torus. A small circle
around the origin divides it into two parts: compact topologically nontrivial
part, on which p and p’ are regular (have no poles), and the non-compact
part which is topologically equivalent to C without origin (see figure 9.1).

Figure 9.1: Elliptic curve

The Weierstrass p-function is extremely important as any elliptic function
with the same periods can be expressed through it. We will need in our con-
sideration the fact, that any elliptic function f(z) with the only pole (inside
the parallelogramm of periods) at zero can be represented as a polynomial
in two variables of p, ¢, i.e. f(z) = R(p(z),p'(2)). From (9.4) it follows that

f(2) = Ri(p(2)) + p'(2) Ra(p(2)), (9-5)

where R; and R, are polynomials.
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9.3 Generalized Moments on Elliptic Curves

As it was shown above (Chapter 3), the study of the center problem for the
Abel equation leads naturally to the “moment-like” expressions of the form
[ P'dQ and [ Q'dP, and similar more complicated ones.

All these expressions naturally appear as a part of the expressions for the
Taylor coefficients of the Poincare mapping given in Chapter 3 above.

Transforming these coefficients via integration by parts, one obtains ex-
pressions of the form [ P*Q’dP and [ P'Q’dQ (considered in Chapter 8),
and the expressions

masnin() = [ Poea@) [P aaten) [ P ot da

where p(x) = dP(z)/dz, q(x) = dQ(z)/dz (introduced by J-P. Francoise).

Expressions of this form, considered on complex curves of genus greater
than zero, lead to multivalued functions. Hence we generalize definition of
moments to this case:

Definition 9.3.1 For two multivalued functions P, Q) on a Riemann Surface
X we define generalized moments m; ; and mg,j as integrals along a given

curve vy of o
dmi; = P'QIdQ (i,j > 0) (9.6)
dm}; = P'QIAP (i, > 0) (9.7
We normalize m; ; and m; ;, assuming that all of them vanish at a fized point
a. Here P and Q are analytically continued along the curve v from the point
a.

Remark 9.2.1: Let us notice, that

i+1 i+ 1 i+ 1 i+1 ) i+l

diEl,

) Pi—|—1 jPz’—i—l Pz’—|—1 ) jPi—|—1 -
dm;; = Q'd ( > =d (Q )— dQ} =d (Q ) / dmit1j-1

Below we shall use this relation in computations of m, ;.

Following [BFY3-4], we can consider a problem of vanishing (or non-
ramification) of generalized moments:
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Moment center problem: Find conditions on P, Q under which all the
moments mg ,(z) for a certain set of indices (i,7) are univalued functions
along a given curve v (and if v is not closed with end points a and b, then a
and b are conjugate, i.e. m; j(a) = m; ;(b) under analytic continuation along

)

Below we present some rather preliminary computations in this direction
for elliptic functions.

Theorem 9.3.1 Let P, QQ be a pair of elliptic functions with the only pole in-
side the parallelogramm of periods at zero. Then for all nonnegative k, n and
all sufficiently small o (inside the parallelogramm of periods) the generalized
moments

/| P (9.8)

vanish.

Proof: The proof follows from the fact, that for sufficiently small o (smaller
than min(w;, wy)) elliptic functions P and ¢ do not have poles (in the par-
allelogramm of periods) outside the circle |u| = a. Hence, the circle |u| = «
bounds (on the elliptic curve) a compact domain, on which the integrand is
regular. W

Remark: We may prove the theorem, using combinatorial arguments. As
any elliptic function with the only pole at the origin can be represented
in the form (9.5), it follows from (9.4) that any integral of the form (9.8)
can be presented as a sum of integrals of the form f\u|:a p(u)*p(u)'du and

flu\=a p*(u)du. Both integrals are zeros: the first being the increment of

k%l p"1 along |u| = «, while the second contains only even degrees of z and

hence does not have residue inside |u| = a.

Let us notice, that from remark 9.2.1 it follows that generalized moments

- PO Q)P and [, P(u)}Qu)"dQ are canal, as [ d (%) =
0.

Next question we are interested in is computation of generalized moments
along periods of elliptic integrals.
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Theorem 9.3.2 Let p be Weierstrass p-function, wi, we be periods. Then
[ stwra i o,
for all k and n.

Proof: fwi ot dy = fwi " (493 — gap — g3)*p'du = fwi F(p)p'du=0. 1

In general, numerical computations show that [ p(u)"p'(u)** # 0. Indeed,

Lo oo du = [ p"(4p* — gap — ga)Fdu = >, / pPdu. As [ prdu =
j wi

Ky (k)w; + Ky (k)mi, where 1; = [, p(u)du, hence

| stwrau = avi+ By,

Several first integrals are computed below:
L pw)?du = Lo,

12
39
Sqy = B 4+ 292,
29 g3
Ydu = — 2 .+ ==, etc.
fw.; p(u)*du 51 .256w,+ - i etc

9.4 Abel equation with coefficients — elliptic
functions

As we saw in the previous section, all the generalized moments [ P(u)*Q(u)"dP
for elliptic functions P, ) with the only pole at the origin vanish. For ra-
tional functions that would imply center (under some additional restrictions

on P and Q). For elliptic functions the similar statement does not hold. Al-
though for some elliptic P, @ the equation (A) may have center (say, P = Q),

in general (A) does not have a center. In particular, the following theorem
holds:
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Theorem 9.4.1 Let p be Weierstrass p-function. The equations
dy = y*dp + y3dp’ and (9.9)

dy = y*dp' + y3dp (9.10)

ramify along any small circle around zero.

Proof: By theorem 6.3.2. (Chapter 6) in order for Abel differential equa-
tion (A) to have center all the functions ¢g(z) in the expansion of Poincare
Return Map must be univalued functions of z. Substituting finite expansion
(for sufficiently many c¢; to garantee all the necessary terms for all negative
powers of z) for p(z) into formulas of Chapter 3 for ¢(z), we find that for
Abel equation (9.9) ¢s(z) has logarithmic term 2= (g5 — 27¢3) In z, which is
the determinant of the Weierstrass function p and hence nonzero, i.e. @g(2)

is non-univalued function.

For Abel equation (9.10) all terms up to ¢g(z) are univalued functions,
but ¢g(z) has logarithmic term =(g3 — 27¢3)(6g, — 11)In z, which can be
zero only for g = 6/11. However, if go = 6/11, ¢11(2) has logarithmic term
soa=03(95 — 27¢3) In z, and it is nonzero. M
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